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Directed loop updates for quantum lattice models
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This article outlines how the quantum Monte Carlo directed loop update recently introduced can be applied
to a wide class of quantum lattice models. Several models are considered: XKin-models with longitu-
dinal and transverse magnetic fields, boson models with two-body interactions, and one-dimensional spinful
fermion models. Expressions are given for the parameter regimes where very efficient “no-bounce” quantum
Monte Carlo algorithms can be found.
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I. INTRODUCTION antiferromagnet$8]. However, as mentioned in Réf/] the
directed loop equations apply to a much wider class of mod-

The invention of nonlocal loop updates have made quanels and we will here show how to construct algorithms for
tum Monte Carlo(QMC) simulations an indispensable tool general lattice models by giving some general solutions to
for studying large-scale quantum many-body systems. the directed loop equations.

Algorithms with nonlocal updates are advantageous to al- The directed loop equations possess often many solutions
gorithms using only local updates. This is because they avoigiot all of them giving effective algorithms, and it will be
the low temperature slowing down of the configuration seimportant to choose some guidelines for how to find effec-
lection process that occurs for local algorithms which se+jve solutions. In Ref[7] it was emphasized that the occur-
verely limits the accuracy and validity of the obtained re- ences of a certain type of move, the “bounce” which leads
sults. to path back tracking, effectively undoing an update already

The most well known of the nonlocal QMC algorithms is 4 rjed out, should be minimized in order for the algorithm
the Loop algorithn{1,2], which can be used directly in con- y, pe effective. In Refi7] a region in parameter space for the

tinuous imaginary tlm§3] avoiding the Trotter-discretization s=1/2 XXZ model was found, where bounces can be com-
and has proven efficient for a variety of systems. Another

method is the stochastic series expansiB8B [4] where pletely avoided. Here we extend this analysis to other mod-

one relies on an expansion of the exponential in the partitioﬁls' However, also in cases where all bounces for a given

function resembling more closely what is done in usual dig£9uation set can be chosen to vanish, there are for some

grammatic perturbation theory. Efficient nonlocal operator-N'0d€ls still choices to be made. In particular this is the case
loop updates in this setting was first constructed in .  or higher spin 6>1/2) XXZ models[9]. Although it is

A third method is the worm algorithif6] first used to mea- impossible to test and compare the efficiency of these
sure off-diagonal Green’s functions. This method is Verychoices for general models we have here tested a multitude

similar to the SSE with operator loops, but the rules de-Of choices for thes=1 Heisenberg case.

scribed in the original formulatiof6] for moving the worm Using the solutions of the directed loop equations pre-
head differs from the rules for constructing the operatorsented here one can construct efficient Monte Carlo moves
loops. just inputting the matrix elements of the original Hamil-

Recently, it was realized that the rules for constructing theonian. This is also the case for the solution of the directed
SSE operator loops and the rules for constructing updates ilmop equations employed in Ré¢6], see Ref[10]. However
the Loop algorithm is in fact just different solutions of a setas we will show, the solutions used here and in R&flead
of general equations, the directed loop equations, followingyenerally to more effective algorithms.
directly from the requirement of detailed balance. The par- To show the versatility of the approach we apply the rules
ticular setting, SSE or space time with continuous imaginarngescribed here to several systems. SpiXXZ models,
time as used in the Loop algorithm is in fact irrelevant and &yosons with two-body interactions, spinful one-dimensional

particular solution to the directed loop equations can be ap(1p) fermions and thes=1/2 XXZ model in a transverse
plied to both cases with only minor changed. Thus the fg|q.

issue is not about which method is more efficient—the Loop
algorithm or the SSE operator loops. Rather, the issue is how
to pick the most efficient solution to the directed loop equa-
tions.

In Ref.[7] the solutions of the directed loop equations for ~ While it was shown in Ref[7] that the directed loop
the s=1/2 XXZ model were analyzed in detail. These solu-update applies as well to the Loop algorithm as the SSE
tions have been used to study zero-field anisotrepid/2  operator-loop method, we will keep the discussion within the

SSE formalism here.
The starting point of the SSE method is the power series
*Electronic address: sylju@nordita.dk expansion of the partition function,

Il. THE LOOP UPDATE
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whereNy is the number of bonds on the lattice. The explicit
minus sign cancels the minus sign in front @fin Eq. (1) a) b)

and so if all matrix elements df,, are positive, all terms in

Eq. (1) are positive. The bond operators are further decom- FIG. 1. (a) Operator sequence for a three-site system. There is

posed into two operators, one site for each column in the figure. The states on each site are
labeled by encircled integers. The operators are shown as elongated
Hy,=Hip+Hop, 3 boxes. There are two off-diagonal operat{fited boxes and one
diagonal operatofopen bo}. A propagated state can be read of as
whereH, , is diagonal andH,), off diagonal. one row of encircled integerga) is bottom row, while the first

The powers oH in Eq. (1) can be expressed as sums of propagated stater(1)) is the second row from the bottortb) The
products of the bond operators. Such a product is convepsperator sequence ifa) shown as a vertex picture, where all op-

niently referred by an operator-index sequence erators have become vertices, each with four legs. Each leg carry
information about the statéencircled integer and is connected
Sh=[a1,bil.[az,ba], . .. [ay,by], (4)  through a dotted line to a leg on another or the same vertex. The

dotted lines wrap around the top and bottom of the figure. In the
where aje{1,2 corresponds to the type of operator yerex picture we do not distinguish between diagonal and off-

(1=diagonal, 2= off-diagona) and b;je{1,... Ny} is the  diagonal operators as that is defined uniquely by the vertex legs.
bond index. Hence,

=3 5T

n!

n
(5) Loop algorithm there is no notion of the diagonal update and
so there the only concern is the loop update.

The algorithm for constructing the loop update is as fol-
where=1/T. It is useful to define normalized states result-|ows. With the configuration mapped onto a linked vertex
ing when|a) is propagated by a fraction of the SSE operatorconfiguration, an initial entrance vertex leg is first picked at
string random. Then the stat on the entrance leg isroposedo

D change into a new stagg with a certain probability. An exit
|a(p))~H H, o la) ©) leg on the starting vertexthe vertex to whlch the initial
T R Lt vertex leg belongsis then chosen together with new states
for the entrance and exit legs according to a certain probabil-
In Fig. 1(a) a particular operator sequence is shown for aity table. As will be seen below it is the solution to the
three-site system. There are three operators, one diagonal adilected loop equations that dictates the form of this prob-
two off-diagonal ones. The state at each site is labeled by aability table. The probability table is constructed such that
integer(encircled and the propagated states can be read othe new state of the initial entrance leg is required to be equal
as rows of encircled integers. The stéte) is the bottom to the proposed stat, .
row. For the discussion of the Monte Carlo updates it is Changing the state on the entrance-leg or the exit-leg, or
convenient to recast the picture in Figl@linto a vertex both, will result in one or two “link-discontinuities,” where
picture shown in Fig. (b) where each operator is pictured as states on different legs belonging to the same link are differ-
a vertex with four legs. Each leg is carrying state informationent. A configuration with link discontinuities does not con-
and is connected to another leg on the same or on anoth@ibute to the partition function, so the process must be re-
vertex. peated until the configuration has no more link
The most important part of a Monte Carlo algorithm is discontinuities.
how the configuration is updated. In the SSE method there The process repeats by taking the leg connected to the exit
are two main types of updates, the diagonal update and tHeg of the initial vertex as entrance leg to a new vertex, and
loop update. The diagonal update is quite trivial and insert& new exit leg and state changes are again selected according
or removes diagonal operators in the operator string. It serve® a probability table. In order not to introduce more link
the purpose of sampling different lengths of the operatodiscontinuities the new state of the new entrance leg is re-
string [7]. Here we will be concerned with the loop update stricted to be equal to the updated state of the previous exit
which changes the type of operators in the operator strindeg. Thus the link discontinuity between the previous exit leg

> but does not change the total number of operators. In the

= Hai \b;
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and the current entrance leg is removed. A state change of

the new exit leg will, however, introduce a new link discon- 62 X2
tinuity and so the link discontinuity is effectively moved in C X3
front of the path. Xl
When there is a conservation law such that the state e
change at the exit leg is determined by the state change at the 1

entrance leg the link discontinuities will only vanish when

the path closes forming a loop. Then the link-discontinuity 'NThe vertices are shown as horizontal lines while the legs are verti-

front of .the path V_Vi” can(':e.l f’:lgainst the discontinuity presentcal. No states are shown, only the labeling of the different legs and
on the link on which the initial entrance leg belongs. In con-y.o vertices they belong to.

trast, when there is no such conservation law a link discon-

tinuity can vanish just because an exit state is not changeghroduce more link-discontinuities there are restrictions on
although the entrance stateas changed. One can then ter- e updated states'(e) on the entrance leg:s (e;)
minate the path if there was only one link discontinuity:Si—l(Xiil) for i>1. Fori=1, the first vertexs(e,)

present before this step. This can be achieved by requiring na s,. Thus we might as well substitu(e,) for s, in Eq.

link discontinuity at the initial entrance l¢d0]. This starting (8). An example illustrating some of the symbols used here is

condition is not possible when there is a conservation law agnown in Fig. 2. The sum in E¢8) is over all paths and state
no new configuration would result, but in the absence of %hanges which lead to the new configuratin

conservation law, state changes on the exit leg can occur 1o expression for the reverse process whsteis

even if there is no state changes on the entrance leg. changed intos can easily be written down in terms of the
Lets now investigate how detailed balance is satisfied fo%ymbols used in Eq(8) as eachterm in the sum can be
the loop update. We will find the restrictions on the prob-re\erseq by just starting at the last exit leg and propagate
abilities governing the selection of exit legs and states agcwards until the initial entrance leg is reached. Changing
well as on the initial probabilities. This was also done in Ref. o states in opposite order brings back the original configu-

[7], but was restricted to the case where there is a CONSeV@siion s, The probability for the reverse process can thus be
tion law such that the exit state is determined by the state ritten

change of the entrance leg. In general the detailed balance
condition reads

FIG. 2. A sequence of steps leading to a new spin configuration.

P(s'—8) =2 R(S"Xp) Ps(8"(Xp) ="~ *(Xn))
W(s)P(s—s')=P(s'—s)W(s'), (7)
. . _— XP(s",x,—s"" %, ep)
where W(s) is the weight of the configuratios and P(s
—s') is the probability of changing the configuration fram XP(s" %, 1—s" %6, 1)
to s’. For the loop update the probability of changing the
configurations=s° to s’=s" can be written as a sequence of

steps X P(st,x;—s% ;). ©)

, Now if one requires detailed balance to hold in the change of
P(s—s')=2 R(s’,e1)Ps(s"(€1) =59—5)) states on zsinglevertex ’

X P(s%,e;—shx) W(s™ H)P(s™ L e X,p)
X P(s',e,—5%%,) = P(s™ X" L e ) W(S™), (10)

it follows, by multiplying Eq. (8) with W(s)=W(s?), re-
X P(s" ! e, 8" x,), (8) peated use of Eq10), and comparison with Eq9) multi-
plied byW(s') that detailed balance for the whole process is
whereR(s°,e,) is the probability for choosing the vert%nleg satisfied if
e; as the initial entrance leg given the full configuratien
P«(s°(e;) =s,—5,) is the probability for proposing a spe- R(s e;)P(s’(e;) —s'(ey))
cific new states,, at the initial entrance leg,. The entrance =R(s", X)) Ps(s"(X,) —S""1(Xp)) (11)
(exit) leg on vertex is denotedg;(x;). We denote bys' the
full configuration after state changes on iltle vertex in the  holds in addition to Eq(10).
path, so thas’=s ands! is the state obtained by possibly ~ When there is a conservation lax, ande; refer to dif-
changing the states & andx;. The configuratiors"=s’. ferent legs on the same link and the state charsjés;)
The notatiors'(j) refers to thesingle sitestate at leg of the ~ —s’(e;) ands"(x,)—s" *(x,) occurring in Eq.(11) must
full configurations'. P(s'~',e;—s',x;) is the probability therefore be opposite to each other. S&{s,e;) is chosen
given the configuratios' ~* and the entrance leg on vertex  to be uniform independent afande;, detailed balance re-
i to exit the same vertex a4 while changing the entrance quires the probabilities of opposite update proposals in the
state tos'(g;) and the exit state te'(x;) [11]. In order not to  initial step to be the same. With no conservation law we
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should setPy(s°(e;)—s'(€1))= (e, sl(e,)» CAUSING NO ® ® ® @ ® ® /@3
link discontinuities at the initial entrance leg. In this case o ® ) 0] o
detailed balance is satisfied with a unifofn ﬁ) + +GP +GP/

In addition to the above we should require that the path \l, \L \L \L

always exits a vertex, ® ©) ® ® ® ©) @

, , ® @ ©@ @ ® @
2 2 PGS e —sx)=1, (12 . . .
X §(x) FIG. 4. The verticegshown below which result from selecting

the different exit leggshown abovein Fig. 3. The conservation
where the sums are over all possible exit legsand state law here is such that the sum of the states below each vertex equals
changes on this leg. Note again thﬁa(tei) is constrained to  the sum apove. Th.&L on the entrange leg indicates that the state on
be equal to the exit statd " (x,_,) of the previous vertex. the in-leg is to be increased by unity.
When the exit leg equals the entrance leg the entrance state is
first changed, then the state on the exit leg. tions where there is a conservation law.

Equation (10) involves only the ratio of configuration In order to describe the general form of the directed loop
weights for configurations which differ at most by having equations for a general interaction with legs it is con-
states changed at two legs on a single verfékey can also venient to abbreviate the labeling somewhat from that used
differ in the number of link-discontinuities, but these carry in the preceding section. To define this new labeling, we start
no weight here. Because the full configuration weight is a by selecting a reference vertéwhich can be any of the
product over vertex weights it is sufficient to consider eachallowed verticesand label its weightV,. We then choose an
vertex separately. To simplify the notation slightly we will entrance leg and label this leg as leg 1, and then number the
hereafter use the notatianto mean the state configuration rest of the legs on this vertex 2,3.. ,n=Njyy, see Fig. 3
on asinglevertex. The weight of this single vertex is denotedfor an example of a two-site interaction. We then pick a
W(v). We also introducex as specific way of changing the state at the entrance leg. Thus

the equations derived will apply to the vertex with weight
e —v' X)) W, and with the specific state change at entrance leg 1. On
(13 changing the states at both the entrance and exit(beagord-
ing to the conservation lamone arrives at a new vertex. A

Thus given the values dd it is possible to construct the specific example is shown in Fig. 4. Distributing the weight

probability tables for how to choose exit legs and exit states?Ver all possible exit legs according to H35) gives

The equations governing the valuesapfEqs.(10) and(12)
can be written W;=ay+a+---+ag,, (16)

OO

a.(Uifl

P te—v',x)= W' %)

le—vlx)=aw x—v' " Le), (14)

a(v
where we have labeled the weigleg by their entrancei)
_— i _— and exit(j) legs. Now label the weight of the vertex reached
2 2 a' he—o'x)=W' ), (15 py exiting at legj asW; . Thus if the exit was on leg 2 we

Xi i(x.
ivi(x) would label that verteXV,.
which constitute the directed loop equations introduced in Now start with the vertexV, and change the state on leg

Ref.[7] generalized to the case where there is not necessarify " theoppositeway to what was done when leg 2 was an
a conservation law dictating the state change on the exit legXit 1€9. Exiting on any of the legsV/, has a similar decom-

position aswWjy:
IIl. THE DIRECTED LOOP EQUATIONS

We will now investigate the structure of the directed loop Wo=ap+agt - +az, (17

equations, Eqs(14) and (15). We will first consider situa-
where now the entrance is on leg 2 on the vertex, with

3 4 weight W,, which differs from vertex 1 by having changed
the states at leg 1 and 2. The weight corresponds to the
@ @ process where the path enters at leg 2 and exits atleg 1. The

states are changed in tbppositeway to that when arriving
at W, from W,;, and hence the process is undoing the

@ @ changes and arriving back ®,. In Fig. 5 an example of
this is shown. From Eq(14) it follows thata,;=a;,. Now
1 2} one can ask if exiting at leg 3 or higher yields the same

vertex when starting fronW, as it does starting fronV,.
FIG. 3. Example of a vertex where the entrance leg is the lowerThe answer to this is yes, because starting fidfm one
left leg. would change the state at legs 1 and 3 while starting from
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® o) o) ® ® o) matrix is effectively reduced. An example of this is the
3 g\ o) d) =1/2 XXZ model, where only three exit possibilities for
3 P §P+ \@+ q>+ each entrance leg is allowed, thus in this case the directed
\L \L loop equation sets have dimensionality 3.
There is a general solution to the directed loop equations
O Q Q o @ O Q @ due to Sandvik5] employed in a number of work42]. This
© @ @ © ©) ® @ © solution which we will label solution A reads

FIG. 5. The verticegbelow) resulting from selecting the differ-
ent exit legs on vertex 2 in Fig. &econd from the leftwhen the
entrance leg is leg 2 and the state change is in the opposite direction
to that in Fig. 4.

W W,
W AWt -+ W,

aij (19)

which implies that the probabilities take the heat-bath form
W, one would change the states at legs 2 and 3. \But
differs from W, only by having different states at legs 1 and - 1 W,
2 and thus the state at leg 2 éhanged twiceén opposite Pi—])= W, Wi+ Wot -+ W, (20)
directions resulting in the same configuratigvy. An ex-
ample illustrating this is shown in Fig. 6. The weights areThe advantage of this solution is that it is general and easy to
hence uniquely defined by this procedure, and one is guagpply. However, it does not treat bounce processes different
anteed that the only vertices which are related by the detailelom other updates and is thus expected not to be as effective
balance equations are those which can be reached by chang-many cases. In Ref7] it was shown that there are other
ing the state on the entrance leg together with the state ogp|utions which performs much better for tee 1/2 XXZ
any exit leg of the reference vertex. The directed loop equamggel.
tions can therefore be written as The system of Eqs(18) containsn(n-+1)/2 unknowns
and n equations. Whem=2 there are always more un-
knowns than equations; making many solutions possible.
app, Ay - Al 1 W, However if one seek solutions where all bounces are absent,
. = . | (18 all diagonal elements zero, the number of unknowns is re-
’ duced ton(n—1)/2 while the number of equations remains
amn @ - apn/ \1 Wi, n. So without bounces one finds that for 3 the solution is
. o _unique while forn>3 there are again many solutions. While
where the matrix on the left hand side is a real symmetriGys counting of unknowns and equations gives information
(nxn) matrix with all entries non-negative to avoid negative 5pq,t when one can expect solutions, it does not ensure that
probabilities. The magnitudes of the diagonal elements detefye solutions are positive which is required in order to have
mine the probabilities for exiting on the same leg as thepositive probabilities.
entrance, the so-called bounce processes. The bounce pro-tq jnyestigate the solutions more closely let us start with

cesses are generally ineffective as they do not change thge simplest case where the matrix is reduced to & Zp
spin configuration and should be minimized. For a given,4irix
1 WA
= . (21

model and parameters there are several such sets of equa-
1 W,

a;; A - Qi 1 W,

tions.

Although the directed loop equations consistnef Nigys
equations this number is for many models in practice often
reduced as one or more of the vertices arrived at might not be )
allowed, that is they have zero weight. If so, all entries in thelt is clear that a bounce-free solutien;=a,,=0 can only
matrix involving transitions to the disallowed vertex must beoccur whenw, =W, for which a;,=W, implying thatP(1
zero, which means that the corresponding column in the ma=>2)=P(2—1)=1. WhenW, # W, bounces are necessary.
trix is zero. The Symmetry of the matrix |mp||es that also theThere are several possibilities for Writing down a solution in

corresponding row is zero and so the dimensionality of théhis case, but one solution which also generalizes to bigger
matrices is to choose to bounce off only the vertex with the
& o o

o ® ® biggest weight. If we assumé/;>W, t_his §o|ution isag;

9 N é :Wl_WZ! a22:0, and 312:W2. Th|S g|VeS P(1*>2)

S—P @ © 0 9 "0 @ =w,/w, P(2-1)=1, andP(1—1)=1—W,/W;. Note
that this bounce solution reduces to the bounce-free solution

ai;; ap

a;p Ay

in the caseV;=W,, thus whenever the directed loop equa-
O - ©) O tions reduces to a (2) system one can use the bounce
® @ ® solution above.
o+

For a (3x3) system the bounce-free solutioa;{=ay,
FIG. 6. Two different ways of arriving at vertex 3 in Fig. 4. In =as3=0) is unique and reads
the top line the process goes from vertex 1 to 3 via vertex 2. While
in the bottom line it goes directly from 1 to 3. a=(W;+W,—Ws3)/2,
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a13:(W1_W2+W3)/2, a12: (W1+W2_W3_W4)/2+ a34,

ap3= (= W1+ W,+Wj3)/2. (22 a13= (W1 —Wo+W3—W,)/2+ay,,
It is clear that this solution ceases to be a valid solution ans=(— W, +W,+ Wy +W,)/2— (as,+ay,),
whenever one of the weights is bigger than the sum of the
two smaller weights. In this case one needs again to include a14=Wy— (azstans). (25

bounces. Again this can be done as in thex@) case by
only bouncing off the vertex with the biggest weight. Assum-Here we have assumed that=W,=W;=W,. WhenW,

ing thatW; is the biggest weight this bounce solution can be—0 the requirement that,, be nonnegative forces;, and
summarized as a,, both to zero. This solution withas,=a,,=0 goes

smoothly into the solutions for theX33 set described above
ay=W;—W,—Ws, in the limit W,— 0. For later use we will term this solution
whereas,=a,,=0 (for all W,) for solution B. Solution B
a;p=W,, has the advantage that it is valid whenever the bounce solu-
tion above is not. It also goes continuously into the bounce
a15=Ws, (23 solution atW,=W,+Ws+W,.
Solution B implies that the region where one can write

with all othera’s zero. This solution is complimentary to the down a solution without bounces is given by

bounce-free solution Eq(22) being valid in the regime
where the bounce-free solution is not valid. Furthermore — W, +W,+ W3+ W,=0, (26)
these solutions are continuous at the boundary, whéye

=W,+Ws,. It is also interesting to see how these solutionswhere W;=W,=W,=W,. While this was inferred from a
reduces to the solutions described above for the 2P case  special solution this result is in fact general. One can show
when the smallest weighfassumed here to bB&/5) goes to  on general grounds that the criterion allowing for a bounce-
zero. Then clearly the bounce solution reduces to the (dree solution igfor an (nxXn) matrix]

X 2) case. At first sight the bounce-free solution does not,

however its regime of validity shrinks whet;—0 asW; —Wi+Wot .-+ W,=0. (27)
=W, and the bounce-free solution is only valid wheér
<W,+W;. Thus the bounce-free solution is again only
valid whenW;=W, and so also the bounce-free solution
reduces to the solution found in the X2) case.

There are many bounce-free solutions winen4. A general
one which reduces to the solutidh above whenWs=Wjg
=...=W,=0 is termed solutioB1 here and is

Going on to the (& 4) case it is clear that again we can o= (W +Wo— Wa—W,)/2,
write down the bounce solution by bouncing off only the
vertex with the biggest weight. In fact this solution can be Aya= (Wi — Wo+ W5 —W,)/2,
generalized to anyn(< n) matrix and reads when we assume
thatW; is the biggest weight Ans=(— W+ W+ W3+ W,)/2,
all W2 e Wn a14: W4_W5/2,
. . ' (24) a15= (W5_W6)/2, ey
Wpe O - 0 agn-1= (W1 —W,)/2,
where a;;=W;— (Wy+Ws;+---+W,). This solution is a;,=W,/2,
valid when one weight is bigger than the sum of the rest of
the weights. This means in practice that bounces are only ass=Ws/2,
needed in parameter regimes where one term in the Hamil-
tonian dominates. The probability tables following from this asg=Wg/2, . . .,
solution has a quite simple interpretation. The probability for
moving between vertices other than that with the biggest an—1n=Wy/2. (28

weight is zero while that of moving from the largest weight

configuration to the smaller ones is the ratio of the smalleiThe requirement thaB1 reduces to solutiol8 above re-

weight to the larger weight and unity for the reverse processstricts — W, + W, + W3+ W,=0.

The bounce probability is unity minus the probabilities for  The above matrix framework also holds in the case where

moving to the smaller weight configurations. there is no conservation law which dictates the state change
Whenever the bounce solution above ceases to be valion the exit leg once the state change on the entrance leg is

one can write down a bounce-free solution. However, this igjiven. Then the matrix dimension is increasednts Njggs

not unique as there are four equations with six unknownsx Ng,es WhereNqqsis the number of legs on the vertex and

The different solutions can be parametrized as follows: Nguaes@re the number of allowed state changes on each exit
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leg. This is because one must here also take into account a’,

possible state changes on the exit legs. This includes thi —® @ 0 Q /@D Q 0
possibility where the state on the exit leg remains un—,@ @ +q) © +@/ © +@_@
changed, which as described on the preceding section wil l 1, l l
terminate the path. The numbers 1 ricthus each have a

vertex type, a leg and an update type associated with then Q © Q Q o O ©
Here also the state change of the exitjéyg the processy; ® @ O ©@ O Q
is opposite to the state change on the entrancq legthe A B C D

processajy -
FIG. 7. Update of a vertex for the spin-1 XXZ model which

IV. SPIN-s XXZ MODELS results in the four allowed vertices shown below. Here we have
labeled the single-site states with the eigenstatesSof me
Before we study the efficiency of different solutions let us[—1,0,1]. From left to right the resulting vertex weights ae C
consider an example. Consider the spiXXZ model with  +h—7, 1 and 1. If instead one had considered the update, where
nearest neighbor interactions. We have also added a magnetie entrance spin is decreased by one unit, the spins on the resulting
field, an interaction proportional toSf)? and a physically  vertices would have the opposite sign and the only change in the
unimportant constartt, weights would be that the second vertex from the left would have

weight C—h—7.
H=—> {S'S'+9/—J,S/S+Ch+ >, {—hS+vSH?). _ _ _ _ _
() ' as this attempt will lead to a vertex with zero weight. This

(29) holds also for updates attempting to decrease a spin below its
We take the exchange coupling to be ferromagrid and minimum value. It thus follows that all sets of directed loop

choose units such that its magnitude is unity. equations for thes=1/2 XXZ model has at most dimension
Using the normalization of the ladder operat@&s=S, 3 [7]. Fors=1 the update of the vertex shown in Fig. 7 is
+is,, described by an equation set with dimensionality 4. This up-
date together with the update where the spin on the same
S.|s,m)y=\(sTm)(stm+1)|s,m=1), (300  vertex is decreased, their symmetry related updaetring

from another in-le and their reverse updatgeing back-

whereme[ —s,s] is the S* quantum number which labels wards are in fact the only updates for tise=1 model gov-
the state on a vertex-leg, it is easy to see that the different o by an equation set with dimension 4. The other equa-
vertex weights for this model are tion sets have dimensions 2 and 3.

It is interesting to ask for the region in parameter space
where the ineffective bounce processes can be avoided. The

1 defining feature of this region is that E@6) should hold for
= E\/(SI n)(sxtn+1)(s=m)(s¥m+1), all equation sets in the model. Fer=1/2 this region was

31) shown in Ref.[7] to be the the region defined ki,

+2/h|<1. That is for XY-like anisotropies and moderate
W(n,m,n,m)=C—[J,nm—h(n+m)+v(n?+m?], fields. To generalize this region to arbitrary sjirene can
consider increasing the state on the lower left leg by unity on
32 a diagonal vertex with weightV(n,m,n,m). The directed
where the arguments & represent the states on legs 1,2,3,loop equations then relates this vertex to the vertid&s
and 4 labeled as in Fig. 3, a=a/Z, whereZ is the co- +1mn+1m), W(n+1m-1n,m), and W(n+1m,n,m
ordination number of the lattice. +1). In the casen=0 the off-diagonal weights are equal,
C must be chosen such that all diagonal weights are norwhile for m==s one of the off-diagonal weights vanishes.
negative. Generally we will choos@to be slightly above its Now chooseC such that the weights of the diagonal vertices
minimal valueC,. Cy is the value ofC for which the small- ~ are always larger than the off-diagonal ones. While this is a
est diagonal weight is zero. This value depends on the modénatter of choice in the SSE method it is always true in the

parameters. In order to specify the valuedive follow Ref.  Loop algorithm as the diagonal vertices are of order unity
[7] and write while the off-diagonal ones are of order the Trotter spacing.

Then the inequality26) takes the form

W(nx1m3¥1n,m)

C:CO"F €, (33)

wheree is an arbitrary non-negative real number. |J m—ﬁ+5(2n+1)|
For generak the maximal dimensionality of the directed z

loop equation sets for this model is 4. However, they do not 1

all have dimension 4. For the vertices containing a spin with < 5\/(S+ n+1)(s—n)X[y(s—m+1)(s+m)
the maximum fh=s) spin the equation set for updates
which attempts to increase this spin further has dimension 3 +V(s+m+1)(s—m)], (39
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n—1 m+1 n m+l n-1 m+l n-1 m+2 (06— —F——F7 T ]
| | | | .
n m ntl m n+l m-1 n+l m - r

FIG. 8. The vertices resulting from increasing the spin on the r
lower left leg of the off-diagonal vertex, shown left. The right two r
vertices are not allowed in the XXZ model, and so the directed loop 082l
equation set reduces to having dimensionality 2. The circles around
the leg states are omitted for clarity.

wherene[—s,s—1] andme[ —s,s]. The most restrictive % L
case is forn=s—1 and m=s for which the bounce-free

criterion is 3

0.4

|3,|s+[h|+[v|(2s—1)<s. (35) I

The same inequality is obtained by considering lowering a
spin on a diagonal vertex and when a spin on an off-diagonal
vertex is changed in the same direction as it is being changed I
by the off-diagonal operator. However, when a spin on an L s .
off-diagonal vertex is changed in the directioppositeto 0 1 . .
how it is changed by the operator a stricter condition is ob- h/s

tained, see Fig. 8. This is because there are no operators

changing the spin on a site by two units in the XXZ model. FIG. 9. Magnetization per site and spin magnitude as function of

02+

To avoid bounces in this case h/s for 100 sites Heisenberg antiferromagnetic chains having differ-
ent spins =100). The inset shows the behavior at low fields. The
(s+tm)(s—m+1)=(s+m+1)(s—m), (36) dotted lines are guides to the eye.

where—s+1<mss—1. Thus this condition does not apply on thes=1/2 curve is based on an average of 10 hins each
for s=1/2. The condition EQq(36) is equivalent tom=  wjth 10* MCS (5x10* MCS for equilibration and took
—m, which only is satisfied fom=0. Thus fors<1 con-  about 20 min on a single processor 868 MHz Intel Pentium
dition (36) does not constrain the no-bounce parameter re|, For comparison a typical point on the=1, s=3/2, and
gion. However, fors>1 one always need bounces for theses=2 curves using the same number of equilibration and

kind of vertices, and so fos>1 it is not possible to find an  measurement steps took about 2, 5d @nh respectively.
algorithm within the framework presented here which is en-The s=1/2, 1, 3/2, and 2 simulations involves 6, 17, 34,

tirely without bounceg14]. . and 57 nonzero vertices, respectively.
For s>1/2 it is also possible to consider updates that
change the quantum numbers by more than one unit. How- V. EEFICIENCY

ever, because there are no nonzero off-diagonal terms where
the magnetization at a site is changed by two units such an In Ref. [7] a number of examples for the=1/2 XXZ
update will be described by an equation set of dimensionalitynodel showed that algorithms minimizing the number of
2. Thus, for almost all parameters, this update will containbounces is generally more effective than those where no such
bounces and because the path without bounces is determiminimization is attempted.
istic (it is determined by the straight-through process for di- In the s=1/2 XXZ model the directed loop equations
agonal vertices and the diagonal process for off-diagonahave dimensions 3. Thus in the regime where a bounce-free
oneg there will be a sizable probability for the process to solution exists, it is unique. However, when the directed loop
bounce back and forth along the predetermined path before &quations have dimension 4 or greater the bounce-free solu-
possibly ends by retracing its path all the way to the startingion is not unique. The solutions to the bounce-free four-
point without having done any changes. It is thus not ex-dimensional case can be parametrized as shown in(Egjs.
pected that inclusion of these updates will make the simulawe will now investigate how to choose the most efficient of
tion more efficient. these. This cannot be done in complete generality as a gen-
To demonstrate that different spin magnitudes can beral physical model involves many equation sets relating the
simulated efficiently using the same basic code with changeifferent vertices, and as we will see the overall efficiency
ing just the number of different states on a site and the matrixlepends on how the sets are interconnected. However we can
elements of the Hamiltonian we show in Fig. 9 the magnetipick a specific model and parameters, and try out different
zation curves for different 100 sites Heisenberg antiferrosolutions there. For this we pick a simple model with a four-
magnetic spin chains wite=1/2, 1, 3/2, and 2 at inverse dimensional equation set, ttee=1 Heisenberg model, and
temperaturg8J=100. At low fields one can clearly see that measure autocorrelations for the staggered magnetization as
the integer spin chains have a gap while the half-integer ones function of different bounce-free solutions.
are gapless. At low fields the stair-case finite size effects are We use the integrated autocorrelation time as a measure of
also clearly seen for the half-integer chains. A typical pointefficiency [2]. It is a measure for how many subsequent

046701-8



DIRECTED LOOP UPDATES FOR QUANTUM.. .. PHYSICAL REVIEW E7, 046701 (2003

Monte Carlo stepsMCS) are needed in order to obtain sta- i — '
e ) . . L 20 Hm—m a,=a,,=a/2
tistically independent configurations. A low value indicates | o ®a,=2,2,=0
an efficient algorithm. The integrated autocorrelation time 15[ & -a a,,=0, a,,=a ._‘..o"'
for a quantityO is defined as C .o
o =
10 N
1 .
Tinf O1= 5+ 2, Aolb), (37) _ sF
,E, - ——-A—r—A~——A-—Al‘——A——JrT—A———A——A
whereA(t) is =201
. . . 15:— e J
(O +1)O(1))—(O(i))? - ™
Ao(t)= — " (39) g o« ®
(O(1)9)—(O(i)) 10p e
wherei andt are Monte Carlo times, measured in units of '
one MCS. A MCS is defined here by adjusting the number of ‘

loop updates during equilibration such that every vertex in 0 0.5 1
the linked list is on average visited twicgot counting a
bouncegin one MCS.

There are only two inequivalent four-dimensional equa-
tion sets for thes=1 Heisenberg model. See Fig. 7 for the
vertices belonging to one of these sets. The vertices belon
Ing tp the other seF are Iabgl@d, B, C', an_dD’, and are arametrizationa,,= as;=a/2, dashed linesa,,=0, ag,=a and
pbtalneq by Cha”g'”g t'he sign on all states in the correspon otted lines are,,=a, az=0. The top panel is for the case where
ing unprimed vertices in Fig. 7. all weights are equalC=1, h=0. The bottom panel is foC

In the zero field Heisenberg casé,£1, h=v=0) all 15 h=0. The arrow indicates the location of the fully symmet-
weights of the vertices shown in Fig. 7 can be chosen to b@c algorithm wherea;; =1/3 for i #].

equal C=1). When two or more weights are equal there is
an ambiguity in the ordering of vertices when ordered acmost efficient solution. One should keep in mind that the
cording to their size as is assumed in the specification of theffectiveness as measured here depends in general not just on
solution in Egs.(25). However, a specific ordering of the the rules for the directed-loop equation sets seen individu-
vertices and values oé,, and az, can be shown to be ally, but also on how different sets are interconnected. The
equivalent to a solution for a different ordering of the equal-asymmetry observed above should probably be attributed to
weights vertices with other values ab, andaz,. The ex- the diagonal vertex with an up and a down spin which has
plicit relations are shown in Appendix A. Therefore it suf- double the weight of the other vertices. Although it is not a
fices to choose one ordering which we here choose to bpart of the two four-dimensional equation sets it still plays a
ABCD, meaningW;=W,, W,=Wg, W3=W., and W, role making an asymmetry in how to choose the most effec-
=Wy where the letters refer to the letters in Fig. 7, andtive solution.
investigate efficiency, as measured by the integrated autocor- Letting C>1 all four weights are no longer equal. How-
relation function for the staggered magnetization, as funcever, the two diagonal ones are still equal to each other as
tions ofa,, andas,. Because of the time-reversal symmetry well as are the two off-diagonal ones. Figure 10, bottom
we choose the ordering’B'C’'D’ for the other set and use panel, shows autocorrelation times whér= 1.5 still with
equal values o&,, andas, for the two sets. the same ordering of vertices as in the top panel. Again we

To avoid searching the whole two-dimensional space ofee thata,,=0 is favorable for the efficiency. In Ref15]
these two quantities we will restrict ourselves to three linesthe spin-1 Heisenberg model with disorder was studied using
wherea,,=asz,=al2, a,,=a, az=0, anda,,=0, az,=a, directed loops using the solution where all diagonal updates
respectively. The quantitg is restricted to the sgtO,W,], were excluded and other processes have equal probabilities.
where W, = (—W;+W,+W,;+W,)/2. This restriction fol- In the language used here their solution corresponds to the
lows from the requirement of having non-negative weights.case where,,=0 andas,= 1/2 with the ordering’ABCD

In Fig. 10 we show integrated autocorrelation times forandA’B'C’'D’.
the staggered magnetization for valuesagf andas, along In a magnetic field the time-reversal symmetry is broken
the three lines specified above. In the top panel all weights imnd the two four-dimensional equation sets are no longer
both four-dimensional equation sets are equal and it i®qual. Furthermore the diagonal vertices in each of these sets
clearly seen that havina,,=0 gives the lowest autocorrela- are not equal and it suffices to choose the ordering of the two
tion times, being close to the minimal value 0.5 in the wholeoff-diagonal ones. Figure 11 shows integrated autocorrela-
range ofaz,. Naively one would think that for equal weights tions for the staggered magnetizationhat 0.1 for different
the most effective solution should be the most symmetriocvalues ofa,, andag,. In the upper panel the ordering of the
one:a;;=1/3, for alli#j. The arrow in the top panel shows vertices areBACD and A’B'C'D’ while it is BACD and
the autocorrelation time for this case. This is cleartthe  A’B’'D’C’ in the lower panel. In both panels we have used

FIG. 10. Integrated autocorrelation times for the staggered mag-
netization of a 64-site Heisenberd,& 1) spin-1 chain a3=16 as
functions of different values od,, andas,. The order of the ver-
Sices when having equal weightsA8BCD. Solid lines indicate the
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20k ' ' ' field algorithms as can be seen from Fig. 10. Thus with the
: appropriate orderings of equal-weight verticBADC and
15E A'B’C’D’, solutionB is an optimal solution for thes=1
- Heisenberg model.
10F Given this fact and the other desirable features of solution
. B, that it is complementary to the bounce-solution Ezf),
_ Sl _ being valid whenever the bounce solution is not amce
g f . | “I“ Ay versg and the fact that it reduces to the unique bounce-free
H‘gzg'— ‘ ' H'a —— solution in the three-vertex case when the smallest weight
eT L U0 vanishes, we will hereafter focus solely on comparing solu-
15F tion B with solutionA.
10;— VI. INTERACTING BOSONS
5F The directed loops can also be applied to the boson
. Hamiltonian
%
a H=<Z> [—t(alaj+H.c)+vnin;—C]
ij

FIG. 11. Same as Fig. 10 except tiat 0.1. In the upper panel
the ordering of vertices BACD andA’B'C’'D’ while itisBACD u
RPN C! i ineli +2 _Mn‘l‘_n(n_l) ’
and A’B'D’C’ in the lower panel. The arrow indicates the best i oo i
algorithm found in Ref[9].

(39

which describes interacting bosons hopping on a Iatﬁ{Ee.
the same values d,, and a,, for the two sets. The most &;, andn; are the boson creation, annihilation and density
efficient algorithm using the ordering in the upper panel isoperator on sité, respectively. The single-site states are la-
found fora,,=0 andag,=W, . For the ordering used in the beled by the boson occupation number. The vertex weights
lower panel, the efficiency is seen to depend solely on thé&re
sumay,+az, and is maximized foa,,+ az,=W, . A similar

analysis was carried out by Harada and Kawashigjaln W(n,n",n+1n"—1)=ty(n+1)n"(1- 6y ),
the language used here their parametrization corresponds to a
parametrization of the ordering used in the lower panel, W(n,n",n=1n"+1)=tyn(n"+1)(1= 38y p ),

whereagz,=0 anda,, was varied. The algorithm performing
best at a fieldh=0.1, their solution 1, corresponds to the
casea,,= W, which indeed also is among the most efficient ~ W(n,n",n,n’)=C—
algorithms found here.
It is interesting to compare these autocorrelation times
with those obtained using solutigha The integrated autocor- +n’(n'—1))
relation times for the staggered magnetization using solution
A corresponding to the top, bottom panels of Fig. 10 and to ~
Fig. 11 are 11.6, 12.5, and 12.0 respectively, which is sigWherea=a/Z, andn,n"e[0n,]. C must be chosen such
nificantly more than the most efficient algorithms which that the diagonal vertices are non-negative. However, this
have autocorrelation times close to 0.5. cannot always be achieved as in principle the boson occupa-
For higher magnetic fields the variation of autocorrelationtion number can be arbitrarily large. So in practice wién
times with the parametea is similar to what is shown for >—|v| one must put an upper limit,, to how many
h=0.1 in Fig. 11. However, at high fields the differencesbosons can occupy a site. The<{5, , ) factors are needed
between the least and most efficient choices are less préo implement this. They prevent the boson occupation from
nounced than in small fields. increasing above, . Imposing this restriction the boson sys-
Summarizing the results in this section it follows from tem has as many states on a single site as asspiodel,
Fig. 11 that in a magnetic field the orderi®ACD with  where Z+1=n,+ 1. Furthermore there is a one-to-one cor-
ax=W,, az=0 and A'B'D'C’" with aj,=W,,a3=0 respondence between the nonzero vertices in the boson
gives an algorithm which is among the most efficient onesmodel and the nonzero vertices in the spidxXZ model,
Using Table | in the Appendix it follows that this solution is although their values are of course different. Thus the only
nothing but solutiorB (a,4=as4=0,a;5,=ag,=0) for the or-  change needed to the smrprogram code is to change the
deringsBADC and A’B'C’'D’. Taking the same solution numerical values for the weights. A special example of this is
and setting the field to zero all the weights become equal anthe well-known mapping in the hard-core limity(t— o),
again using Table | in the Appendix it follows that this solu- where one can set,= 1 without penalty and thus the boson
tion is equivalent to solutioB for the orderinglABCD and  model is mapped onto a spin-1/2 model. The error introduced
A’'B’'C’'D’ which clearly is among the most efficient zero- by imposing a restriction on the boson occupation number

~ U
vnn’—u(n+n’)+ E(n(n—l)

: (40
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FIG. 12. Densityp, compressibilityx=dp/du, and superfluid . . .
. - . . FIG. 13. Densityp, compressibilityx=dp/dw, and superfluid
density ps for a N_128.S'te 1D boson _Hubbard model with density p, for the (32<32) boson Hubbard model wittiU=0.03
=1, x/U=0.17 as functions of the hoppirigU. The inverse tem- and Bt=2.5 as functions of the chemical potentialU. e=0.3
perature is8U =320 ande=0 for all data points. The inset shows was used lfor all data points ' '
the compressibility in the region of the reentrant insulating phase. P '
The lower curve in the inset is foN=256 andBU=480. The . . . . . .
superfluid density shown is measured as the square of the bos gorlthr’rtl)s forftt?ls Hang)lltomf’in \'II'VF? consider Io_opsl Char?glng
world-lines spatial winding numbdd.6]. the number of bosons by unity. The conservation law here is
that the Hamiltonian conserves the total number of bosons,
) o n,+n,=ns;+n,. Now increase the number of bosons on the
can be controlled by repeating runs with differents. One  |ower left leg of a diagonal vertex by unity, then the vertices
expects only small variations in the results as loniass  related by the directed loop equations are shown in Fig. 15
bigger than the typical occupation number on each site. Iynd their weights are from left to right
the simulations described below we usg=4 for which

there are 57 nonzero vertices. W, =W(n,m,n,m),
To show the efficiency of solutioB applied to this boson
system we show in Fig. 12 the reentrant behavior of the Mott W,=W(n+1,m,n+1m),
insulating phase in 1D first predicted from a DMRG calcu-
lation[17]. In Fig. 13 we show how the densify compress- Ws=W(n+1,m—1,n,m),
ibility «=dp/du=NpB((p?)—(p)?) and superfluid density
ps varies for a 2D Bose-Hubbard model as the chemical W,=W(n+1m,n,m+1), (41)

potential is increased keepinfJ fixed. One can clearly see
the insulating regions as well as the singularities in the comynere W(ny,n,,ns,n,) refers to Eq.(40), and ne[0n,
pressibility at the first and second superfluid-insulator transi-_ 1], me[0n,]. The difference between the diagonal
tion. Because of the relatively big value o, being near . : X _ ~ o~

. . k . weights isW; —W,=vm-+Un— u. Now chooseC such that
the tip of the lowest Mott lobes, the insulating regions be- he biggest diagonal weight\(; or W,) is always bigger
come rapidly narrower, and the gaps are relatively smal an any of the off-diagonal w}aighwz andW.. One then
making it necessary to lower the temperature further to se inds from Eq.(26) that in order to avgid bour‘:&:es
the singularities at the highet-superfluid-insulator transi- a
tions. Figure 14 compares integrated autocorrelation times -~ o~
for the density as measured using solutiarand B for a lm+0n—j|<tyn+1[Vm+ ym+1(1= 8],
smaller but similar system to that shown in Fig. 13. The

differences in autocorrelation times are most pronounced at ) o
low values of the chemical potential and away from thewherene[0n,—1], me[0,n]. The same inequality is also

peaks seen in the Mott insulating regions which arises fronPbtained when considering lowering the boson occupation
the small denominator in E¢38). value on a diagonal vertex. In the hard-core case where

To find the regime where it is possible to use bounce-free=1 this criterion reduces thu|<t and|v — u|<t.

(42)
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In the soft-core casey,>1, there is an additional condi- n m n+l m n m n m+1
tion for a bounce-free algorithm which in fact never is satis- T—— T — I — e —
m n+l m n+l m-1 n+l m

fied. To see this consider the off-diagonal vertex with weight n

W(n,m,n—1m+1) and increase the state on the leg with  FIG. 15. Increasing the occupation on the lower left leg results
occupationn by unity. Then only two vertices with weights in the following four vertices(The circles on the legs have been
tyn(m+1) and ty(n+1)(m+1) are related. These are omitted)

never equal, and thus according to the discussion following

Eq. (21) bounces are always needed for soft-core bosons.  \W(q;s;,05S,,01S1,05S,)

U
VII. 1D FERMIONS WITH SPIN =C— 13818+ V(q = 1)(g~ D+ 5 [(0: - 1)?

The rules described here applies also to 1D spinful fermi-
ons[18]. However for(anti)periodic boundary conditions the 2 ~ ~
simulation is restricted to a system where the number of (A2~ D)= 1]=Hy(s;+8) —u(a1+qz) [, (44)
spin-ups and downs are both &wver odd number. Thus

with these boundary conditions one must carry out the simug hare agaira=a/Z and Z is the coordination number. As

lation at so low temperatures that only configurations havingpe states will be represented in terms of occupation number
a fixed (everjodd number of up and down spins contributes. giates which are bosonic states, one needs a convention for

For open boundary conditions there are no such restrictiong,,, the phases are related to the fermionic states. We follow
Consider the 1D fermion Hamiltonian Ref.[18] and define

H=> {~t(c|cj,+H.c)+V(n—1)(n,—1) il My =0--)=(=1)M---n=1---),  (45)

)
. . 1 Ci’fi|...nilzo...>=(_1)”¢+”u|...ni’lzl...% (46)
_Ji(s,sj+:~:|ys,¥)+Jzasj—C}+Zi U(”w—z)

where nﬁ is the operator counting the number of particles
1 with spin up on sites less thanandn; is the total number
N — E) —puni— HZS.Z}, (43)  operator for spin-up particles. A similar definition holds for
the annihilation operators. The explicit for the spin down
states is to ensure anticommutation between Fermi operators
wherec/ , c;,, andn;, are the creation, annihilation and with different spin indeces. Withantiperiodic boundary
density operators of a fermion with spim on sitei. n; conditions

=n,;+n,; andS =cac;/2, are the particle density and spin

X

operator on sité. The states on each site are labeled by the cli1=(—1Pcl,, (47)
charge and spirlq,s) so that[0)=[0,0), [1)=[13), [1)
=|1,—3), and|T])=]2,0). The weights of the diagonal ver- Chsy =(—DPc] |, (48)

tices can be read directly off the Hamiltonian above and are
whereP=(—1)0 it follows that for the off-diagonal weights
to be nonnegative , n, must both bgeven odd.

The weight of all off-diagonal vertices where one patrticle,
and only one, is transferred from one site to the other is
The off-diagonal vertex where two-particles are inter-
changed, the spin-flip vertex, has weighi|)=J, /2. In all
there are 34 allowed vertices (32 Jf =0). We consider
four types of updates: Adding or removing a spin-up or down
particle. The conservation law here is the conservation of
charge and spin. That ig;+0,=03+0q, and s;+S,=5S3
+5,.

This conservation law is in fact so strong that no four-
] vertex relations exists. This can be seen by considering the
0 process of adding a spin-up particle to the lower left leg on a

b s i 1/% 2 25 ® diagonal vertex. In this case the update where the exit is on
H the upper left leg, the “continue straight through,” will be

FIG. 14. Integrated autocorrelation times for the dengifip a  allowed as well as the bounce. In addition there is one and
(12x 12) Bose-Hubbard modeU/t=33.333 andBt=0.5 for the ~ only one off-diagonal vertex that arises: If the right legs con-
two solutionsA and B. The valuee=0.3 was used for both solu- tains an up spin, then the lower right leg is the allowed exit.
tions A andB. The upper right leg is the allowed exit if the right legs does
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not contain an up spin. Thus only three vertices are related 20 - I . I . I .
by the directed loop equations. It is quite clear that this also L 1;;.1\}=1'6 rer
holds for all the other update processes on a diagonal vertex. | gg 0.8F

One must also consider adding a spin-up particle to the off-
diagonal spin-flip vertex. This results again in three allowed
vertices, but now they are all off diagonal, two with weight 151
and one with weighfl, /2. Finally adding a spin-up particle -
to a leg on an off-diagonal vertex with weightesults in one |
of the two above mentioned equation sets or in a two- s

dimensional equation set with equal weights. Thus for this 8
model all the directed loop equations have dimensions 3 or O, 10

]

w

&b

less.
To find the regime where bounces can be avoided we _

employ Eq.(26) with W,=0. ChoosingC big enough so that

one of the diagonal vertices always have the biggest weight

it follows that 5 N
t=]J,/4+ |V|+|0|12+|H |12+ | u| (49) ;
in order to avoid bounce-solutions to the equation sets, 0
where two diagonal and one off-diagonal vertex are related. 0 1 2 3 4
C cancels as it occurs on both sides of the inequality. For the Vit
set where three off-diagonal vertices are related one must
have FIG. 16. Integrated autocorrelation times for the CDW order
parameter for the two solutiosandB in a N=16 sites system at
t=J,/4 (50 pBt=32, U/t=2, u=J,=J,=H,=0 as functions ol. The inset

showsO¢cpw(7) measured for system sizés=16, 32, 64 at low
to avoid bounces if<J, /2, otherwise it suffices that, is  temperature@t=2N. e=0.5 was used for both solutioWsandB.
non-negative.
To compare the efficiency of solutidB with solution A VIII. SPIN-1/2 FERROMAGNET IN A TRANSVERSE FIELD
we have measur_ed the integrated autocorrelation times for aq gn example of a model without a conservation law we
the charge density waveCDW) order parameter al=m  consider the spin-1/2 XXZ ferromagnet in a transverse mag-
defined as netic field, that is a field along thedirection.

10 = (po( @) pe(— ), 51
cow( @) ={pc(d)pc(—Q)) (51 HZ_(Z) {(Sf‘SJ?‘ﬂLSyS}')—JZS,ZSjZJrC}—hxz s
ij i

where (53

(52) The exchange coupling in the spin XY plane is restricted to
be ferromagnetic as a-rotation on one sublattice which was
necessary to obtain an antiferromagnet in the zero-field case

as functions ofV for U/t=2, N=16, andBt=32 for both ~ cannot be employed here without introducing a minus sign

solutionsA and B (see Fig. 16 While the autocorrelation coming from theh,-term. Alternatively one can view this as
times are quite long in this case considering the relativelyan antiferromagnet in staggeredmnagnetic field.

pc<q>=<1/N>Z e (n+n)

small system size the solutiddis more efficient than solu- The transverse field introduces vertices where the sum of
tion A. The difference in autocorrelation times are largest forthe spins on the lower two legs is not equal to the sum on the
small values ofV. upper two legs, see Fig. 17. This reflects the fact })& is

Let us now consider another update type where two parmot a good quantum number in the presence of a transverse
ticles are added. Even though the update types considerdi@ld. Thus the conservation law utilized in Sec. IV cannot be
above are sufficient for ergodicity, this update type is necesused and we must include the possibilities of a state change
sary if one wishes to measure superconducting correlatioon just one leg, the entrance or the exit leg, keeping the state
functions(local pairg. Then starting from a diagonal vertex on the other legs unchanged. The path construction in the
it is clear that one cannot reach an off-diagonal vertex. Thuabsence of a conservation law always start by keeping the
there are only two possibilities, continuing straight throughentrance leg on the first vertex unchanged, while it stops
or bouncing. To avoid bouncing the weights of the resultingwhen the state on the exit leg is not changed.
vertices must be equal, which meavis- u=0. Otherwise To find the directed loop equations here we first look at
bounces are necessary. Entering an off-diagonal vertex algsbe vertex where all spins are up and the entrance leg is
leads to only two exit possibilities, but there both haveunchanged. Then we have the possibilities of exiting at one
weightt and so the bounce probability can be set to zero. of the four legs as well as changing or not changing the state
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on the exit leg. In all there are eight possibilities, see Fig. 18,

thus the directed loop equations have dimension 8. While the,®_® @ ________ @ @ O @ @

dimension is rather big there are only two different verteng ® ® @ ® ® ® ®
®

weights,W(}]) andW(|]) (the vertices with one leg differ-
ent from the others are all degenejafdext one should take ® ® @ ® O 1‘@
the same vertex, but now change the state on the entranC e -— !
leg. Now there are just seven possibilities as changing botI{ID ® (ﬂ) D) ® ® ®
the lower legs leads to a zero-weight vertex. This proceduré ' '
should be repeated for all vertices, entrance legs and update FIG. 18. The possible exit legs and exit state changes when the
types. entrance leg is the lower left leg on the vertex with all spins up and
It is interesting to note that the region where one carthe entrance leg is unchanged. The dashed line indicates that the
avoid bounces is in fact bigger in this representation using &tate should remain unchanged, while the solid line indicates a spin
transverse field than found in Sec. IV. Take the situatiorfliP-
where the lower left leg on a diagonal vertex is changed. The

vertices belonging to the equation set generated in this way as7= (Ws— W+ W7 —Wpg)/4,

are the vertices that would be generated without the trans-

verse fieldplusthe four vertices with just the in-leg changed asg=Ws/2,

and no change of state on the out leg. The no-bounce crite-

rion is then(assuming tha€ is chosen such that the diagonal ag7= (— W5+ We+ W7+ Wg)/4. (56)

vertices are bhiggekst _ . .
gges This solution reduces also to solutidd when Wg=Wj

13, 1 R =...=W,=0 and is restricted to the region, whereW;s
%s§+4EX. (54  +Wet+W7+Ws=0.
We found that solution®\ and B2 perform better than

One must also consider the sets of the type shown in Fig. 1§0|9ti0§t|)31 fi1n ?" cahses' studied. This can perha.pi bi ex-
where the in-leg is not changed. As there in these cases apidined by the fact that iB1 many processes vanish when

just two different weights out of a total of eight the inequal- the smaller weights are equal which is the case for small to
ity Eq. (27) is always satisfied. intermediate fields. The difference in efficiency between so-

As explained in Sec. IV there is an ambiguity in solution lution A andB2 is small in the cases studied here. We have

B when many vertex weights are equal. Here we have uselaleen unable so far to find a bounce-free solution which
the convention that when two weights are equal that with th&'€ary r?uiperfﬁrms solutioA. = Hibi N

lowest exit leg comes first. In the rare case where the exit F°r hx=0 the &l XY model (J,=0) exhibits a phase
legs are also equal, that with the no state change on the exfgnsition of the Kosterlitz-Thouless typ&9] as a function

leg comes first. We have tried solutién B1, and a solution © temperature, where the helicity modulus as measured by

B2 which is particular for systems of dimensionality lesst® second derivative of the free energy to a twlsh the
than or equal to 8: boundary conditions shows an emerging discontinuity with

increasing system size at.. In zero field this quantity is

a=(Wy+Wo—W3—W,)/2, efficiently measured as _the ﬂuctuatic_)ns_ in the spatial windir)g
number of the loops. With a magnetic field term one can still

as3= (W3 — W+ Wz —W,)/2, measure th_e second derivative of Fhe free energy vyith respect
to a twist in the boundary condition as fluctuations in a

An3= (— Wy +W,+ W5+ W,)/2, “winding” number provided one redefines the winding num-
ber to include a term coming from the magnetic field term in
a14= W, — (W5 +Wg+ W5+ Wg)/4, the Hamiltonian:
2
a15: a45: W5/4y ey (55) d_F = I 2 2
47 2 (Wi, +(Wh ), (57)

aig= asg= Wp/4,
where we have symmetrized the expressiox andy. The

ase=(Ws+Wp—W;—Wjg)/4, modified “winding” numberW, , whereo=x,y, is
@ @ @ @ W, =i2 {(8p 11— 8, 11) 855+ a(P)[ Sy 11— 11
o N, %5 Pl PR Pl Py

+ 8y 11— Op Li+ 8y 11— 8y 114 O 11—
® ® O ® o]{ 7 Init+ 5017 00l i ~Opi1Th (59

FIG. 17. Examples of vertices which do not conserve the totawhere the sum is over all verticgsin the linked list. The
spin in theZ direction. In the transverse fiekl=1/2 XXZ model all ~ Kronecker §-functions contribute whenever the vertgx
such vertices have weight/2 (h,=h,/Z). equals the indicated vertex(p) is the ¢ coordinate of the
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on every vertex type occurring in the model under consider-
ation. For each of these entrance legs the program also have
to consider every possible update, as there should be one
probability table associated with every entrance leg, vertex,
and update type. For each of these entrance legs and update
types one finds all possible exit legs and exit states, and thus
the related vertices. The number of vertices with nonzero
weights reached in this way determines the effective dimen-
sionality of the directed loop equations. Having found this
dimension and weights for the different vertices one can then
pick the probabilities of moving from vertexto j as P(i

__O'S —J)=a;;/W;, wheregq;; is gotten from the general solutions
doa described in Sec. llI.
= i The solutions are naturally divided into two classes; those
> 03 « with and those without bounces: processes where the loop
E 10%E . back-tracks along its path. Bounces should generally be
o —0.2 avoided as they are inefficient. The precise criterion for when
. bounces can be avoided is given in Eg7). When this cri-
01 terion is not fulfilled, bounces are necessary. A general solu-
] tion which then always can be applied is given in Ez¢),
Bl b e b b v e v by g . .
107, 0.5 1 15 ) 25 30 where there is only one bounce, namely, bouncing off the
BJ vertex with the biggest weight.

Whenever bounces can be avoided it is likely that there
FIG. 19. The second derivative of the change in free energyxists a bounce-free algorithm which is more effective. This
resulting from a twist in the boundary conditions is sho(top is supported by the results in R¢fZ] and in the examples
pane) as functions of inverse temperature for different square latxgnsidered here with the exception of the transverse field
tice system sizek X L ranging fromL =8 to L=1024. The bottom XXZ model. where we have not been able to find a bounce-
panel shows the plot of*F/36°L which collapses onto one curve faq 5o tion which clearly is more efficient than solutian
;3;$L1Lsise‘lzvilllgg 4t)heF$a§TEtc';rit:2 é’gtamed using the blggesHowever, the author believes that such a solution exists.
' e For directed loop equation sets with dimensieB, as is
) i ) the case for all the equation sets in #we1/2 XXZ model as
site whose state is changed in the vergesThe symbols; ;. well as for the 1D spinful fermion model considered here,
means that the bond to which the vertex is attached must lig,e pounce-free solution is unique and is given by @)
in the o= direction, andN,, is the number of sites in the  Fqr sets with dimensiorr 3 the bounce-free solution is not
direction. ) unique. In Eq.(25 we have parametrized all bounce-free
~ InFig. 19 we have measuredF/9¢” ath,=1 asafunc-  gojytions in the four-dimensional case. Testing the efficiency
tion of (inversg temperature fot XL square lattices, where f gifferent parameter choices on a model where there is only
L ranges from 8 to 1024. For strong fields the spins argyne four-dimensional equation set, tle=1 Heisenberg
predominantly in thex direction, and it is expected that a model in zero field, we find that even in the case where all
twist in the boundary condition will caus&F/d6 to de-  four weights related by the set are equal, the most effective
pendlllnearly orL. In the bottom pgnel we confirm this by gqjution is not the most symmetric ot off-diagonala;;'s
showing how the scaled curvescaling factor 1) collapse  of equal magnitude Thus we conclude that it is not possible
onto one curve for all’s. In this plot we also show the o find the most effective solution based on the weights of a
magnetization for the biggest system size. single isolated directed loop equation set alone. This is natu-
ral as the efficiency depends on the overall loop motion
through all possible vertices and not just the motion within a
certain subset of vertices related by the same directed loop
We have shown how to construct probability tables for theequation set. Our finding of the most efficient algorithm for
directed loop update in the SSE method in a modelthe spin-1 model coincides with the most efficient direct al-
independent way. The construction involves solutions of thegorithm found by Harada and Kawashirf.
directed loop equations. These equations arise from consid- We have also shown how the directed loop equations can
ering vertices that can be reached from a certain vertex whelnpe applied to study spia-XXZ models, lattice bosons, 1D
states on two legs of that vertex are changed. For a givespinful fermions and transverse field spin models using the
model there are many such equation sets. To cope with theame computer code just changing the number of allowed
many sets it is best to generate them in the set-up part of thetates on each site as well as the vertex weights. We have
Monte Carlo program. Efficiency is not an issue in this con-also worked out expressions for the regions where one can
struction process as ttsameprobability tables will be em- construct algorithms without bounces for these models.
ployed throughout the simulation. To construct the probabil- While finding the most efficient solution to the directed
ity tables the program should go through every entrance letpop equations among the many possible ones remains a dif-

IX. DISCUSSION
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ficult task, the solutions given here are generally more effi- TABLE I. The table shows how the solution of E¢#&1) with
cient than the solution employed in RE5]. The many pos- orderingABCD anday=a, as,=b are related to other solutions
sible solutions to the directed loop equations should be see#ith different orderings of vertices when two or more weights are
as an asset. They are powerful tools allowing efficient simugqual.Wx=(—W;+W5+W;+W,)/2.

lations of a wide class of quantum models.

Order Aoy sy
ACKNOWLEDGMENTS Wa=Wp>Wc>Wp  BACD  Wp—a-b b
W,y>Wg=We>Wp ACBD b a
The author would like to thank Anders Sandvik for valu- W,>Wg>Wc=Wp ABDC W,—a-b b
able discussions. Monte Carlo calculations were in part camy,=Wg>W:=W, BACD Wo—a—b b
ried out using NorduGrid, a Nordic Testbed for Wide Area ABDC W,—a—b b
Computing and Data Handling. BADC a b
WA:WB:WC>WD BACD V\b*afb b
APPENDIX: THE FOUR-DIMENSIONAL NO-BOUNCE BCAD b Wo—a—b
SOLUTION WHEN TWO OR MORE WEIGHTS ACBD b a
ARE EQUAL CABD  W,—a-b a
The no-bounce solutions in the four-dimensional case can CBAD a Wp—a—b
be parametrized as Wa>Wg=Wc=Wp  ABDC ~ W,—a-b b
ACBD b a
a12=(W1+W2—W3—W4)/2+ dsy, ACDB WA—a—b a
ADBC b W,—a—b
a13= (W1 — W+ W3—W,)/2+ay, (A1) ADCB a W,—a—b
WA:WB:WC:WD /ABC:Da a b
Ap3= (— Wi+ Wy + W3+ W,) /12— (azs+azs), BACD?® W,—-a-b b
CBAD? a Wy—a—b
a14=W,— (agatazs), (A2) DBCA? b a
a —a_
where it is assumed that,;=W,=W,=W,. When two or ACDB®  W,—a-b a
ADBC? b W,—a—b

more of these weights are equal the ordering is ambiguous.
However, any solution obtained for a chosen ordering an
choices ofa,,=a andag,=b is identical to a solution ob-
tained using another ordering and other valuesagf and
as4. The purpose of Table | is to relate valuesagj andas,
for different orderings. We choose as a reference ordering th
order ABCD which means thatV;=W,, W,=Wg, W3  Table | we read that a choice af,=a andag,=b for the
=W, and W,=Wp. As an example consider the case orderingABCD give the same rules as the orderiA@DC
whereWe=Wp but W,y>Wg>W;. Then the two orderings with the rulesa,,;=W,—a—b and az;=b. W,=(—W;
ABCD andABDC are inequivalent. From the third entry in +W,+ W3+ W,)/2.

then all weights are equal the transformations—+2,3—4),
(1-3,2-4), and (k-4,2—3) are symmetry transformations im-
plying in particular that the orderingsBCD, BADC, CDAB, and
BCBA give the same rules for a particular choiceacdndb.
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