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Directed loop updates for quantum lattice models

Olav F. Syljuåsen*
Nordita, Blegdamsvej 17, DK-2100, Copenhagen O” , Denmark

~Received 21 November 2002; published 3 April 2003!

This article outlines how the quantum Monte Carlo directed loop update recently introduced can be applied
to a wide class of quantum lattice models. Several models are considered: spin-s XXZ models with longitu-
dinal and transverse magnetic fields, boson models with two-body interactions, and one-dimensional spinful
fermion models. Expressions are given for the parameter regimes where very efficient ‘‘no-bounce’’ quantum
Monte Carlo algorithms can be found.
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I. INTRODUCTION

The invention of nonlocal loop updates have made qu
tum Monte Carlo~QMC! simulations an indispensable to
for studying large-scale quantum many-body systems.

Algorithms with nonlocal updates are advantageous to
gorithms using only local updates. This is because they av
the low temperature slowing down of the configuration
lection process that occurs for local algorithms which
verely limits the accuracy and validity of the obtained r
sults.

The most well known of the nonlocal QMC algorithms
the Loop algorithm@1,2#, which can be used directly in con
tinuous imaginary time@3# avoiding the Trotter-discretization
and has proven efficient for a variety of systems. Anot
method is the stochastic series expansion~SSE! @4# where
one relies on an expansion of the exponential in the parti
function resembling more closely what is done in usual d
grammatic perturbation theory. Efficient nonlocal operat
loop updates in this setting was first constructed in Ref.@5#.
A third method is the worm algorithm@6# first used to mea-
sure off-diagonal Green’s functions. This method is ve
similar to the SSE with operator loops, but the rules d
scribed in the original formulation@6# for moving the worm
head differs from the rules for constructing the opera
loops.

Recently, it was realized that the rules for constructing
SSE operator loops and the rules for constructing update
the Loop algorithm is in fact just different solutions of a s
of general equations, the directed loop equations, follow
directly from the requirement of detailed balance. The p
ticular setting, SSE or space time with continuous imagin
time as used in the Loop algorithm is in fact irrelevant an
particular solution to the directed loop equations can be
plied to both cases with only minor changes@7#. Thus the
issue is not about which method is more efficient—the Lo
algorithm or the SSE operator loops. Rather, the issue is
to pick the most efficient solution to the directed loop equ
tions.

In Ref. @7# the solutions of the directed loop equations f
the s51/2 XXZ model were analyzed in detail. These so
tions have been used to study zero-field anisotropics51/2
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antiferromagnets@8#. However, as mentioned in Ref.@7# the
directed loop equations apply to a much wider class of m
els and we will here show how to construct algorithms
general lattice models by giving some general solutions
the directed loop equations.

The directed loop equations possess often many solut
not all of them giving effective algorithms, and it will b
important to choose some guidelines for how to find effe
tive solutions. In Ref.@7# it was emphasized that the occu
rences of a certain type of move, the ‘‘bounce’’ which lea
to path back tracking, effectively undoing an update alrea
carried out, should be minimized in order for the algorith
to be effective. In Ref.@7# a region in parameter space for th
s51/2 XXZ model was found, where bounces can be co
pletely avoided. Here we extend this analysis to other m
els. However, also in cases where all bounces for a gi
equation set can be chosen to vanish, there are for s
models still choices to be made. In particular this is the c
for higher spin (s.1/2) XXZ models @9#. Although it is
impossible to test and compare the efficiency of the
choices for general models we have here tested a multi
of choices for thes51 Heisenberg case.

Using the solutions of the directed loop equations p
sented here one can construct efficient Monte Carlo mo
just inputting the matrix elements of the original Ham
tonian. This is also the case for the solution of the direc
loop equations employed in Ref.@5#, see Ref.@10#. However
as we will show, the solutions used here and in Ref.@7# lead
generally to more effective algorithms.

To show the versatility of the approach we apply the ru
described here to several systems. Spin-s XXZ models,
bosons with two-body interactions, spinful one-dimensio
~1D! fermions and thes51/2 XXZ model in a transverse
field.

II. THE LOOP UPDATE

While it was shown in Ref.@7# that the directed loop
update applies as well to the Loop algorithm as the S
operator-loop method, we will keep the discussion within t
SSE formalism here.

The starting point of the SSE method is the power se
expansion of the partition function,
©2003 The American Physical Society01-1
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Z5Tr$e2bH%5(
a

(
n50

`
~2b!n

n!
^auHnua&, ~1!

where the trace has been written as a sum over diag
matrix elements in a basis$ua&%. The Hamiltonian is written
in terms of bond operatorsHb , whereb refers to a pair of
sitesi (b), j (b),

H52 (
b51

Nb

Hb , ~2!

whereNb is the number of bonds on the lattice. The expli
minus sign cancels the minus sign in front ofb in Eq. ~1!
and so if all matrix elements ofHb are positive, all terms in
Eq. ~1! are positive. The bond operators are further deco
posed into two operators,

Hb5H1,b1H2,b , ~3!

whereH1,b is diagonal andH2,b off diagonal.
The powers ofH in Eq. ~1! can be expressed as sums

products of the bond operators. Such a product is con
niently referred by an operator-index sequence

Sn5@a1 ,b1#,@a2 ,b2#, . . . ,@an ,bn#, ~4!

where aiP$1,2% corresponds to the type of operat
(15diagonal, 25off-diagonal! and biP$1, . . . ,Nb% is the
bond index. Hence,

Z5(
a

(
n50

`

(
Sn

bn

n! K aU)
i 51

n

Hai ,biUaL , ~5!

whereb[1/T. It is useful to define normalized states resu
ing whenua& is propagated by a fraction of the SSE opera
string

ua~p!&;)
i 51

p

Hai ,bi
ua&. ~6!

In Fig. 1~a! a particular operator sequence is shown fo
three-site system. There are three operators, one diagona
two off-diagonal ones. The state at each site is labeled b
integer~encircled! and the propagated states can be read
as rows of encircled integers. The stateua& is the bottom
row. For the discussion of the Monte Carlo updates it
convenient to recast the picture in Fig. 1~a! into a vertex
picture shown in Fig. 1~b! where each operator is pictured
a vertex with four legs. Each leg is carrying state informat
and is connected to another leg on the same or on ano
vertex.

The most important part of a Monte Carlo algorithm
how the configuration is updated. In the SSE method th
are two main types of updates, the diagonal update and
loop update. The diagonal update is quite trivial and inse
or removes diagonal operators in the operator string. It se
the purpose of sampling different lengths of the opera
string @7#. Here we will be concerned with the loop upda
which changes the type of operators in the operator str
04670
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but does not change the total number of operators. In
Loop algorithm there is no notion of the diagonal update a
so there the only concern is the loop update.

The algorithm for constructing the loop update is as f
lows. With the configuration mapped onto a linked vert
configuration, an initial entrance vertex leg is first picked
random. Then the states0 on the entrance leg isproposedto
change into a new statesu with a certain probability. An exit
leg on the starting vertex~the vertex to which the initial
vertex leg belongs! is then chosen together with new stat
for the entrance and exit legs according to a certain proba
ity table. As will be seen below it is the solution to th
directed loop equations that dictates the form of this pr
ability table. The probability table is constructed such th
the new state of the initial entrance leg is required to be eq
to the proposed statesu .

Changing the state on the entrance-leg or the exit-leg
both, will result in one or two ‘‘link-discontinuities,’’ where
states on different legs belonging to the same link are dif
ent. A configuration with link discontinuities does not co
tribute to the partition function, so the process must be
peated until the configuration has no more lin
discontinuities.

The process repeats by taking the leg connected to the
leg of the initial vertex as entrance leg to a new vertex, a
a new exit leg and state changes are again selected acco
to a probability table. In order not to introduce more lin
discontinuities the new state of the new entrance leg is
stricted to be equal to the updated state of the previous
leg. Thus the link discontinuity between the previous exit l

FIG. 1. ~a! Operator sequence for a three-site system. Ther
one site for each column in the figure. The states on each site
labeled by encircled integers. The operators are shown as elong
boxes. There are two off-diagonal operators~filled boxes! and one
diagonal operator~open box!. A propagated state can be read of
one row of encircled integers.ua& is bottom row, while the first
propagated stateua(1)& is the second row from the bottom.~b! The
operator sequence in~a! shown as a vertex picture, where all op
erators have become vertices, each with four legs. Each leg c
information about the state~encircled integer! and is connected
through a dotted line to a leg on another or the same vertex.
dotted lines wrap around the top and bottom of the figure. In
vertex picture we do not distinguish between diagonal and
diagonal operators as that is defined uniquely by the vertex leg
1-2
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DIRECTED LOOP UPDATES FOR QUANTUM . . . PHYSICAL REVIEW E67, 046701 ~2003!
and the current entrance leg is removed. A state chang
the new exit leg will, however, introduce a new link disco
tinuity and so the link discontinuity is effectively moved
front of the path.

When there is a conservation law such that the s
change at the exit leg is determined by the state change a
entrance leg the link discontinuities will only vanish whe
the path closes forming a loop. Then the link-discontinuity
front of the path will cancel against the discontinuity pres
on the link on which the initial entrance leg belongs. In co
trast, when there is no such conservation law a link disc
tinuity can vanish just because an exit state is not chan
although the entrance statewas changed. One can then te
minate the path if there was only one link discontinu
present before this step. This can be achieved by requirin
link discontinuity at the initial entrance leg@10#. This starting
condition is not possible when there is a conservation law
no new configuration would result, but in the absence o
conservation law, state changes on the exit leg can o
even if there is no state changes on the entrance leg.

Lets now investigate how detailed balance is satisfied
the loop update. We will find the restrictions on the pro
abilities governing the selection of exit legs and states
well as on the initial probabilities. This was also done in R
@7#, but was restricted to the case where there is a conse
tion law such that the exit state is determined by the s
change of the entrance leg. In general the detailed bala
condition reads

W~s!P~s→s8!5P~s8→s!W~s8!, ~7!

where W(s) is the weight of the configurations and P(s
→s8) is the probability of changing the configuration froms
to s8. For the loop update the probability of changing t
configurations[s0 to s8[sn can be written as a sequence
steps

P~s→s8!5( R~s0,e1!Ps„s
0~e1!5s0→su…

3P~s0,e1→s1,x1!

3P~s1,e2→s2,x2!

•••

3P~sn21,en→sn,xn!, ~8!

whereR(s0,e1) is the probability for choosing the vertex le
e1 as the initial entrance leg given the full configurations0,
Ps„s

0(e1)5s0→su… is the probability for proposing a spe
cific new statesu at the initial entrance lege1. The entrance
~exit! leg on vertexi is denotedei(xi). We denote bysi the
full configuration after state changes on thei th vertex in the
path, so thats0[s and s1 is the state obtained by possib
changing the states ate1 andx1. The configurationsn[s8.
The notationsi( j ) refers to thesingle sitestate at legj of the
full configuration si . P(si 21,ei→si ,xi) is the probability
given the configurationsi 21 and the entrance legei on vertex
i to exit the same vertex atxi while changing the entranc
state tosi(ei) and the exit state tosi(xi) @11#. In order not to
04670
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introduce more link-discontinuities there are restrictions
the updated statesi(ei) on the entrance leg:si(ei)
5si 21(xi 21) for i .1. For i 51, the first vertex,s1(e1)
5su . Thus we might as well substitutes1(e1) for su in Eq.
~8!. An example illustrating some of the symbols used her
shown in Fig. 2. The sum in Eq.~8! is over all paths and stat
changes which lead to the new configurations8.

The expression for the reverse process wheres8 is
changed intos can easily be written down in terms of th
symbols used in Eq.~8! as each term in the sum can be
reversed by just starting at the last exit leg and propag
backwards until the initial entrance leg is reached. Chang
the states in opposite order brings back the original confi
ration s. The probability for the reverse process can thus
written

P~s8→s!5( R~sn,xn!Ps„s
n~xn!→sn21~xn!…

3P~sn,xn→sn21,en!

3P~sn21,xn21→sn22,en21!

•••

3P~s1,x1→s0,e1!. ~9!

Now if one requires detailed balance to hold in the change
states on asinglevertex

W~sm21!P~sm21,em→sm,xm!

5P~sm,xm→sm21,em!W~sm!, ~10!

it follows, by multiplying Eq. ~8! with W(s)[W(s0), re-
peated use of Eq.~10!, and comparison with Eq.~9! multi-
plied byW(s8) that detailed balance for the whole process
satisfied if

R~s0,e1!Ps„s
0~e1!→s1~e1!…

5R~sn,xn!Ps„s
n~xn!→sn21~xn!… ~11!

holds in addition to Eq.~10!.
When there is a conservation law,xn ande1 refer to dif-

ferent legs on the same link and the state changess0(e1)
→s1(e1) andsn(xn)→sn21(xn) occurring in Eq.~11! must
therefore be opposite to each other. So ifR(s,e1) is chosen
to be uniform independent ofs ande1, detailed balance re
quires the probabilities of opposite update proposals in
initial step to be the same. With no conservation law

FIG. 2. A sequence of steps leading to a new spin configurat
The vertices are shown as horizontal lines while the legs are v
cal. No states are shown, only the labeling of the different legs
the vertices they belong to.
1-3
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OLAV F. SYLJUÅSEN PHYSICAL REVIEW E67, 046701 ~2003!
should set Ps„s
0(e1)→s1(e1)…5ds0(e1),s1(e1) , causing no

link discontinuities at the initial entrance leg. In this ca
detailed balance is satisfied with a uniformR.

In addition to the above we should require that the p
always exits a vertex,

(
xi

(
si (xi )

P~si 21,ei ,→si ,xi !51, ~12!

where the sums are over all possible exit legsxi and state
changes on this leg. Note again thatsi(ei) is constrained to
be equal to the exit statesi 21(xi 21) of the previous vertex.
When the exit leg equals the entrance leg the entrance sta
first changed, then the state on the exit leg.

Equation ~10! involves only the ratio of configuration
weights for configurations which differ at most by havin
states changed at two legs on a single vertex.~They can also
differ in the number of link-discontinuities, but these car
no weight here.! Because the full configuration weight is
product over vertex weights it is sufficient to consider ea
vertex separately. To simplify the notation slightly we w
hereafter use the notationv to mean the state configuratio
on asinglevertex. The weight of this single vertex is denot
W(v). We also introducea as

P~v i 21,ei→v i ,xi !5
a~v i 21,ei→v i ,xi !

W~v i 21!
. ~13!

Thus given the values ofa it is possible to construct the
probability tables for how to choose exit legs and exit sta
The equations governing the values ofa, Eqs.~10! and ~12!
can be written

a~v i 21,ei→v i ,xi !5a~v i ,xi→v i 21,ei !, ~14!

(
xi

(
v i (xi )

a~v i 21,ei→v i ,xi !5W~v i 21!, ~15!

which constitute the directed loop equations introduced
Ref. @7# generalized to the case where there is not necess
a conservation law dictating the state change on the exit

III. THE DIRECTED LOOP EQUATIONS

We will now investigate the structure of the directed lo
equations, Eqs.~14! and ~15!. We will first consider situa-

FIG. 3. Example of a vertex where the entrance leg is the lo
left leg.
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tions where there is a conservation law.
In order to describe the general form of the directed lo

equations for a general interaction withNlegs legs it is con-
venient to abbreviate the labeling somewhat from that u
in the preceding section. To define this new labeling, we s
by selecting a reference vertex~which can be any of the
allowed vertices! and label its weightW1. We then choose an
entrance leg and label this leg as leg 1, and then numbe
rest of the legs on this vertex 2,3, . . . ,n5Nlegs, see Fig. 3
for an example of a two-site interaction. We then pick
specific way of changing the state at the entrance leg. T
the equations derived will apply to the vertex with weig
W1 and with the specific state change at entrance leg 1.
changing the states at both the entrance and exit legs~accord-
ing to the conservation law! one arrives at a new vertex. A
specific example is shown in Fig. 4. Distributing the weig
over all possible exit legs according to Eq.~15! gives

W15a111a121•••1a1n , ~16!

where we have labeled the weightsai j by their entrance~i!
and exit~j! legs. Now label the weight of the vertex reach
by exiting at legj asWj . Thus if the exit was on leg 2 we
would label that vertexW2.

Now start with the vertexW2 and change the state on le
2 in theoppositeway to what was done when leg 2 was a
exit leg. Exiting on any of the legs,W2 has a similar decom-
position asW1:

W25a211a221•••1a2n , ~17!

where now the entrance is on leg 2 on the vertex, w
weight W2, which differs from vertex 1 by having change
the states at leg 1 and 2. The weighta21 corresponds to the
process where the path enters at leg 2 and exits at leg 1.
states are changed in theoppositeway to that when arriving
at W2 from W1, and hence the process is undoing t
changes and arriving back atW1. In Fig. 5 an example of
this is shown. From Eq.~14! it follows that a215a12. Now
one can ask if exiting at leg 3 or higher yields the sa
vertex when starting fromW2 as it does starting fromW1.
The answer to this is yes, because starting fromW1 one
would change the state at legs 1 and 3 while starting fr
r

FIG. 4. The vertices~shown below! which result from selecting
the different exit legs~shown above! in Fig. 3. The conservation
law here is such that the sum of the states below each vertex eq
the sum above. The1 on the entrance leg indicates that the state
the in-leg is to be increased by unity.
1-4
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DIRECTED LOOP UPDATES FOR QUANTUM . . . PHYSICAL REVIEW E67, 046701 ~2003!
W2 one would change the states at legs 2 and 3. ButW2
differs fromW1 only by having different states at legs 1 an
2 and thus the state at leg 2 ischanged twicein opposite
directions resulting in the same configurationW3. An ex-
ample illustrating this is shown in Fig. 6. The weights a
hence uniquely defined by this procedure, and one is g
anteed that the only vertices which are related by the deta
balance equations are those which can be reached by ch
ing the state on the entrance leg together with the state
any exit leg of the reference vertex. The directed loop eq
tions can therefore be written as

S a11 a12 ••• a1n

a12 a22 ••• a2n

A A A A

a1n a2n ••• ann

D S 1

1

A

1

D 5S W1

W2

A

Wn

D , ~18!

where the matrix on the left hand side is a real symme
(n3n) matrix with all entries non-negative to avoid negati
probabilities. The magnitudes of the diagonal elements de
mine the probabilities for exiting on the same leg as
entrance, the so-called bounce processes. The bounce
cesses are generally ineffective as they do not change
spin configuration and should be minimized. For a giv
model and parameters there are several such sets of e
tions.

Although the directed loop equations consist ofn5Nlegs
equations this number is for many models in practice of
reduced as one or more of the vertices arrived at might no
allowed, that is they have zero weight. If so, all entries in
matrix involving transitions to the disallowed vertex must
zero, which means that the corresponding column in the
trix is zero. The symmetry of the matrix implies that also t
corresponding row is zero and so the dimensionality of

FIG. 5. The vertices~below! resulting from selecting the differ
ent exit legs on vertex 2 in Fig. 4~second from the left! when the
entrance leg is leg 2 and the state change is in the opposite dire
to that in Fig. 4.

FIG. 6. Two different ways of arriving at vertex 3 in Fig. 4. I
the top line the process goes from vertex 1 to 3 via vertex 2. W
in the bottom line it goes directly from 1 to 3.
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matrix is effectively reduced. An example of this is thes
51/2 XXZ model, where only three exit possibilities fo
each entrance leg is allowed, thus in this case the dire
loop equation sets have dimensionality 3.

There is a general solution to the directed loop equati
due to Sandvik@5# employed in a number of works@12#. This
solution which we will label solution A reads

ai j 5
WiWj

W11W21•••1Wn
, ~19!

which implies that the probabilities take the heat-bath for

P~ i→ j !5
ai j

Wi
5

Wj

W11W21•••1Wn
. ~20!

The advantage of this solution is that it is general and eas
apply. However, it does not treat bounce processes diffe
from other updates and is thus expected not to be as effec
in many cases. In Ref.@7# it was shown that there are othe
solutions which performs much better for thes51/2 XXZ
model.

The system of Eqs.~18! containsn(n11)/2 unknowns
and n equations. Whenn>2 there are always more un
knowns than equations; making many solutions possi
However if one seek solutions where all bounces are abs
all diagonal elements zero, the number of unknowns is
duced ton(n21)/2 while the number of equations remain
n. So without bounces one finds that forn53 the solution is
unique while forn.3 there are again many solutions. Whi
this counting of unknowns and equations gives informat
about when one can expect solutions, it does not ensure
the solutions are positive which is required in order to ha
positive probabilities.

To investigate the solutions more closely let us start w
the simplest case where the matrix is reduced to a (232)
matrix

S a11 a12

a12 a22
D S 1

1D 5S W1

W2
D . ~21!

It is clear that a bounce-free solutiona115a2250 can only
occur whenW15W2 for which a125W1 implying that P(1
→2)5P(2→1)51. WhenW1ÞW2 bounces are necessar
There are several possibilities for writing down a solution
this case, but one solution which also generalizes to big
matrices is to choose to bounce off only the vertex with
biggest weight. If we assumeW1.W2 this solution isa11
5W12W2 , a2250, and a125W2. This gives P(1→2)
5W2 /W1 , P(2→1)51, andP(1→1)512W2 /W1. Note
that this bounce solution reduces to the bounce-free solu
in the caseW15W2, thus whenever the directed loop equ
tions reduces to a (232) system one can use the boun
solution above.

For a (333) system the bounce-free solution (a115a22
5a3350) is unique and reads

a125~W11W22W3!/2,

ion

e

1-5
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OLAV F. SYLJUÅSEN PHYSICAL REVIEW E67, 046701 ~2003!
a135~W12W21W3!/2,

a235~2W11W21W3!/2. ~22!

It is clear that this solution ceases to be a valid solut
whenever one of the weights is bigger than the sum of
two smaller weights. In this case one needs again to incl
bounces. Again this can be done as in the (232) case by
only bouncing off the vertex with the biggest weight. Assu
ing thatW1 is the biggest weight this bounce solution can
summarized as

a115W12W22W3 ,

a125W2 ,

a135W3 , ~23!

with all othera’s zero. This solution is complimentary to th
bounce-free solution Eq.~22! being valid in the regime
where the bounce-free solution is not valid. Furtherm
these solutions are continuous at the boundary, whereW1
5W21W3. It is also interesting to see how these solutio
reduces to the solutions described above for the (232) case
when the smallest weight~assumed here to beW3) goes to
zero. Then clearly the bounce solution reduces to the
32) case. At first sight the bounce-free solution does n
however its regime of validity shrinks whenW3→0 asW1
>W2 and the bounce-free solution is only valid whenW1
<W21W3. Thus the bounce-free solution is again on
valid when W15W2 and so also the bounce-free solutio
reduces to the solution found in the (232) case.

Going on to the (434) case it is clear that again we ca
write down the bounce solution by bouncing off only th
vertex with the biggest weight. In fact this solution can
generalized to any (n3n) matrix and reads when we assum
that W1 is the biggest weight

S a11 W2 ••• Wn

W2 0 ••• 0

A A A A

Wn 0 ••• 0

D , ~24!

where a115W12(W21W31•••1Wn). This solution is
valid when one weight is bigger than the sum of the res
the weights. This means in practice that bounces are o
needed in parameter regimes where one term in the Ha
tonian dominates. The probability tables following from th
solution has a quite simple interpretation. The probability
moving between vertices other than that with the bigg
weight is zero while that of moving from the largest weig
configuration to the smaller ones is the ratio of the sma
weight to the larger weight and unity for the reverse proce
The bounce probability is unity minus the probabilities f
moving to the smaller weight configurations.

Whenever the bounce solution above ceases to be v
one can write down a bounce-free solution. However, thi
not unique as there are four equations with six unknow
The different solutions can be parametrized as follows:
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a125~W11W22W32W4!/21a34,

a135~W12W21W32W4!/21a24,

a235~2W11W21W31W4!/22~a341a24!,

a145W42~a341a24!. ~25!

Here we have assumed thatW1>W2>W3>W4. WhenW4
→0 the requirement thata14 be nonnegative forcesa34 and
a24 both to zero. This solution witha345a2450 goes
smoothly into the solutions for the 333 set described abov
in the limit W4→0. For later use we will term this solution
wherea345a2450 ~for all W4) for solution B. Solution B
has the advantage that it is valid whenever the bounce s
tion above is not. It also goes continuously into the boun
solution atW15W21W31W4.

Solution B implies that the region where one can wri
down a solution without bounces is given by

2W11W21W31W4>0, ~26!

whereW1>W2>W3>W4. While this was inferred from a
special solution this result is in fact general. One can sh
on general grounds that the criterion allowing for a boun
free solution is@for an (n3n) matrix#

2W11W21•••1Wn>0. ~27!

There are many bounce-free solutions whenn.4. A general
one which reduces to the solutionB above whenW55W6
5•••5Wn50 is termed solutionB1 here and is

a125~W11W22W32W4!/2,

a135~W12W21W32W4!/2,

a235~2W11W21W31W4!/2,

a145W42W5/2,

a155~W52W6!/2, . . . ,

a1,n215~Wn212Wn!/2,

a1n5Wn/2,

a455W5/2,

a565W6/2, . . . ,

an21,n5Wn/2. ~28!

The requirement thatB1 reduces to solutionB above re-
stricts2W11W21W31W4>0.

The above matrix framework also holds in the case wh
there is no conservation law which dictates the state cha
on the exit leg once the state change on the entrance le
given. Then the matrix dimension is increased ton5Nlegs
3Nstates, whereNlegs is the number of legs on the vertex an
Nstatesare the number of allowed state changes on each
1-6
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leg. This is because one must here also take into accoun
possible state changes on the exit legs. This includes
possibility where the state on the exit leg remains u
changed, which as described on the preceding section
terminate the path. The numbers 1 ton thus each have a
vertex type, a leg and an update type associated with th
Here also the state change of the exit-legj in the processai j
is opposite to the state change on the entrance leg-j in the
processajk .

IV. SPIN-s XXZ MODELS

Before we study the efficiency of different solutions let
consider an example. Consider the spin-s XXZ model with
nearest neighbor interactions. We have also added a mag
field, an interaction proportional to (Sz)2 and a physically
unimportant constantC,

H52(̂
i j &

$Si
xSj

x1Si
ySj

y2JzSi
zSj

z1C%1(
i

$2hSi
z1vSi

z2%.

~29!

We take the exchange coupling to be ferromagnetic@13# and
choose units such that its magnitude is unity.

Using the normalization of the ladder operatorsS65Sx
6 iSy,

S6us,m&5A~s7m!~s6m11!us,m61&, ~30!

wheremP@2s,s# is the Sz quantum number which label
the state on a vertex-leg, it is easy to see that the diffe
vertex weights for this model are

W~n61,m71,n,m!

5
1

2
A~s7n!~s6n11!~s6m!~s7m11!,

~31!

W~n,m,n,m!5C2@Jznm2h̃~n1m!1 ṽ~n21m2!#,

~32!

where the arguments ofW represent the states on legs 1,2,
and 4 labeled as in Fig. 3, andã5a/Z, whereZ is the co-
ordination number of the lattice.

C must be chosen such that all diagonal weights are n
negative. Generally we will chooseC to be slightly above its
minimal valueC0 . C0 is the value ofC for which the small-
est diagonal weight is zero. This value depends on the m
parameters. In order to specify the value ofC we follow Ref.
@7# and write

C5C01e, ~33!

wheree is an arbitrary non-negative real number.
For generals the maximal dimensionality of the directe

loop equation sets for this model is 4. However, they do
all have dimension 4. For the vertices containing a spin w
the maximum (m5s) spin the equation set for update
which attempts to increase this spin further has dimensio
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as this attempt will lead to a vertex with zero weight. Th
holds also for updates attempting to decrease a spin belo
minimum value. It thus follows that all sets of directed loo
equations for thes51/2 XXZ model has at most dimensio
3 @7#. For s51 the update of the vertex shown in Fig. 7
described by an equation set with dimensionality 4. This
date together with the update where the spin on the s
vertex is decreased, their symmetry related updates~entering
from another in-leg! and their reverse updates~going back-
wards! are in fact the only updates for thes51 model gov-
erned by an equation set with dimension 4. The other eq
tion sets have dimensions 2 and 3.

It is interesting to ask for the region in parameter spa
where the ineffective bounce processes can be avoided.
defining feature of this region is that Eq.~26! should hold for
all equation sets in the model. Fors51/2 this region was
shown in Ref. @7# to be the the region defined byuJzu
12uh̃u<1. That is for XY-like anisotropies and modera
fields. To generalize this region to arbitrary spin-s one can
consider increasing the state on the lower left leg by unity
a diagonal vertex with weightW(n,m,n,m). The directed
loop equations then relates this vertex to the verticesW(n
11,m,n11,m), W(n11,m21,n,m), and W(n11,m,n,m
11). In the casem50 the off-diagonal weights are equa
while for m56s one of the off-diagonal weights vanishe
Now chooseC such that the weights of the diagonal vertic
are always larger than the off-diagonal ones. While this i
matter of choice in the SSE method it is always true in
Loop algorithm as the diagonal vertices are of order un
while the off-diagonal ones are of order the Trotter spaci
Then the inequality~26! takes the form

uJzm2h̃1 ṽ~2n11!u

<
1

2
A~s1n11!~s2n!3@A~s2m11!~s1m!

1A~s1m11!~s2m!#, ~34!

FIG. 7. Update of a vertex for the spin-1 XXZ model whic
results in the four allowed vertices shown below. Here we ha
labeled the single-site states with the eigenstates ofSZ: mP
@21,0,1#. From left to right the resulting vertex weights areC, C

1h̃2 ṽ, 1 and 1. If instead one had considered the update, wh
the entrance spin is decreased by one unit, the spins on the resu
vertices would have the opposite sign and the only change in
weights would be that the second vertex from the left would ha

weight C2h̃2 ṽ.
1-7
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wherenP@2s,s21# and mP@2s,s#. The most restrictive
case is forn5s21 and m5s for which the bounce-free
criterion is

uJzus1uh̃u1uṽu~2s21!<s. ~35!

The same inequality is obtained by considering lowerin
spin on a diagonal vertex and when a spin on an off-diago
vertex is changed in the same direction as it is being chan
by the off-diagonal operator. However, when a spin on
off-diagonal vertex is changed in the directionoppositeto
how it is changed by the operator a stricter condition is
tained, see Fig. 8. This is because there are no opera
changing the spin on a site by two units in the XXZ mod
To avoid bounces in this case

~s1m!~s2m11!5~s1m11!~s2m!, ~36!

where2s11<m<s21. Thus this condition does not app
for s51/2. The condition Eq.~36! is equivalent tom5
2m, which only is satisfied form50. Thus fors<1 con-
dition ~36! does not constrain the no-bounce parameter
gion. However, fors.1 one always need bounces for the
kind of vertices, and so fors.1 it is not possible to find an
algorithm within the framework presented here which is e
tirely without bounces@14#.

For s.1/2 it is also possible to consider updates th
change the quantum numbers by more than one unit. H
ever, because there are no nonzero off-diagonal terms w
the magnetization at a site is changed by two units such
update will be described by an equation set of dimensiona
2. Thus, for almost all parameters, this update will cont
bounces and because the path without bounces is deter
istic ~it is determined by the straight-through process for
agonal vertices and the diagonal process for off-diago
ones! there will be a sizable probability for the process
bounce back and forth along the predetermined path befo
possibly ends by retracing its path all the way to the start
point without having done any changes. It is thus not
pected that inclusion of these updates will make the sim
tion more efficient.

To demonstrate that different spin magnitudes can
simulated efficiently using the same basic code with cha
ing just the number of different states on a site and the ma
elements of the Hamiltonian we show in Fig. 9 the magn
zation curves for different 100 sites Heisenberg antifer
magnetic spin chains withs51/2, 1, 3/2, and 2 at invers
temperaturebJ5100. At low fields one can clearly see th
the integer spin chains have a gap while the half-integer o
are gapless. At low fields the stair-case finite size effects
also clearly seen for the half-integer chains. A typical po

FIG. 8. The vertices resulting from increasing the spin on
lower left leg of the off-diagonal vertex, shown left. The right tw
vertices are not allowed in the XXZ model, and so the directed lo
equation set reduces to having dimensionality 2. The circles aro
the leg states are omitted for clarity.
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on thes51/2 curve is based on an average of 10 bins e
with 104 MCS (53104 MCS for equilibration! and took
about 20 min on a single processor 868 MHz Intel Penti
III. For comparison a typical point on thes51, s53/2, and
s52 curves using the same number of equilibration a
measurement steps took about 2, 5, and 8 h respectively.
The s51/2, 1, 3/2, and 2 simulations involves 6, 17, 3
and 57 nonzero vertices, respectively.

V. EFFICIENCY

In Ref. @7# a number of examples for thes51/2 XXZ
model showed that algorithms minimizing the number
bounces is generally more effective than those where no s
minimization is attempted.

In the s51/2 XXZ model the directed loop equation
have dimensions 3. Thus in the regime where a bounce-
solution exists, it is unique. However, when the directed lo
equations have dimension 4 or greater the bounce-free s
tion is not unique. The solutions to the bounce-free fo
dimensional case can be parametrized as shown in Eqs.~25!.
We will now investigate how to choose the most efficient
these. This cannot be done in complete generality as a
eral physical model involves many equation sets relating
different vertices, and as we will see the overall efficien
depends on how the sets are interconnected. However we
pick a specific model and parameters, and try out differ
solutions there. For this we pick a simple model with a fo
dimensional equation set, thes51 Heisenberg model, and
measure autocorrelations for the staggered magnetizatio
a function of different bounce-free solutions.

We use the integrated autocorrelation time as a measu
efficiency @2#. It is a measure for how many subseque

e

p
nd

FIG. 9. Magnetization per site and spin magnitude as function
h/s for 100 sites Heisenberg antiferromagnetic chains having di
ent spins (b5100). The inset shows the behavior at low fields. T
dotted lines are guides to the eye.
1-8
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Monte Carlo steps~MCS! are needed in order to obtain st
tistically independent configurations. A low value indicat
an efficient algorithm. The integrated autocorrelation tim
for a quantityO is defined as

t int@O#5
1

2
1(

t51

`

AO~ t !, ~37!

whereAO(t) is

AO~ t !5
^O~ i 1t !O~ i !&2^O~ i !&2

^O~ i !2&2^O~ i !&2
, ~38!

where i and t are Monte Carlo times, measured in units
one MCS. A MCS is defined here by adjusting the numbe
loop updates during equilibration such that every vertex
the linked list is on average visited twice~not counting
bounces! in one MCS.

There are only two inequivalent four-dimensional equ
tion sets for thes51 Heisenberg model. See Fig. 7 for th
vertices belonging to one of these sets. The vertices belo
ing to the other set are labeledA8, B8, C8, andD8, and are
obtained by changing the sign on all states in the correspo
ing unprimed vertices in Fig. 7.

In the zero field Heisenberg case (Jz51, h5v50) all
weights of the vertices shown in Fig. 7 can be chosen to
equal (C51). When two or more weights are equal there
an ambiguity in the ordering of vertices when ordered
cording to their size as is assumed in the specification of
solution in Eqs.~25!. However, a specific ordering of th
vertices and values ofa24 and a34 can be shown to be
equivalent to a solution for a different ordering of the equ
weights vertices with other values ofa24 and a34. The ex-
plicit relations are shown in Appendix A. Therefore it su
fices to choose one ordering which we here choose to
ABCD, meaningW15WA , W25WB , W35WC , and W4
5WD where the letters refer to the letters in Fig. 7, a
investigate efficiency, as measured by the integrated auto
relation function for the staggered magnetization, as fu
tions ofa24 anda34. Because of the time-reversal symmet
we choose the orderingA8B8C8D8 for the other set and us
equal values ofa24 anda34 for the two sets.

To avoid searching the whole two-dimensional space
these two quantities we will restrict ourselves to three lin
wherea245a345a/2, a245a, a3450, anda2450, a345a,
respectively. The quantitya is restricted to the set@0,WD#,
where WD5(2W11W21W31W4)/2. This restriction fol-
lows from the requirement of having non-negative weigh

In Fig. 10 we show integrated autocorrelation times
the staggered magnetization for values ofa24 anda34 along
the three lines specified above. In the top panel all weight
both four-dimensional equation sets are equal and i
clearly seen that havinga2450 gives the lowest autocorrela
tion times, being close to the minimal value 0.5 in the wh
range ofa34. Naively one would think that for equal weight
the most effective solution should be the most symme
one:ai j 51/3, for all iÞ j . The arrow in the top panel show
the autocorrelation time for this case. This is clearlynot the
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most efficient solution. One should keep in mind that t
effectiveness as measured here depends in general not ju
the rules for the directed-loop equation sets seen indivi
ally, but also on how different sets are interconnected. T
asymmetry observed above should probably be attribute
the diagonal vertex with an up and a down spin which h
double the weight of the other vertices. Although it is no
part of the two four-dimensional equation sets it still plays
role making an asymmetry in how to choose the most eff
tive solution.

Letting C.1 all four weights are no longer equal. How
ever, the two diagonal ones are still equal to each othe
well as are the two off-diagonal ones. Figure 10, botto
panel, shows autocorrelation times whenC51.5 still with
the same ordering of vertices as in the top panel. Again
see thata2450 is favorable for the efficiency. In Ref.@15#
the spin-1 Heisenberg model with disorder was studied us
directed loops using the solution where all diagonal upda
were excluded and other processes have equal probabil
In the language used here their solution corresponds to
case wherea2450 anda3451/2 with the orderingsABCD
andA8B8C8D8.

In a magnetic field the time-reversal symmetry is brok
and the two four-dimensional equation sets are no lon
equal. Furthermore the diagonal vertices in each of these
are not equal and it suffices to choose the ordering of the
off-diagonal ones. Figure 11 shows integrated autocorr
tions for the staggered magnetization ath50.1 for different
values ofa24 anda34. In the upper panel the ordering of th
vertices areBACD and A8B8C8D8 while it is BACD and
A8B8D8C8 in the lower panel. In both panels we have us

FIG. 10. Integrated autocorrelation times for the staggered m
netization of a 64-site Heisenberg (Jz51) spin-1 chain atb516 as
functions of different values ofa24 anda34. The order of the ver-
tices when having equal weights isABCD. Solid lines indicate the
parametrizationa245a345a/2, dashed lines:a2450, a345a and
dotted lines area245a, a3450. The top panel is for the case whe
all weights are equal,C51, h50. The bottom panel is forC
51.5, h50. The arrow indicates the location of the fully symme
ric algorithm whereai j 51/3 for iÞ j .
1-9
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the same values ofa24 and a34 for the two sets. The mos
efficient algorithm using the ordering in the upper pane
found fora2450 anda345WD . For the ordering used in th
lower panel, the efficiency is seen to depend solely on
suma241a34 and is maximized fora241a345WD . A similar
analysis was carried out by Harada and Kawashima@9#. In
the language used here their parametrization corresponds
parametrization of the ordering used in the lower pan
wherea3450 anda24 was varied. The algorithm performin
best at a fieldh50.1, their solution 1, corresponds to th
casea245WD which indeed also is among the most efficie
algorithms found here.

It is interesting to compare these autocorrelation tim
with those obtained using solutionA. The integrated autocor
relation times for the staggered magnetization using solu
A corresponding to the top, bottom panels of Fig. 10 and
Fig. 11 are 11.6, 12.5, and 12.0 respectively, which is s
nificantly more than the most efficient algorithms whi
have autocorrelation times close to 0.5.

For higher magnetic fields the variation of autocorrelat
times with the parametera is similar to what is shown for
h50.1 in Fig. 11. However, at high fields the differenc
between the least and most efficient choices are less
nounced than in small fields.

Summarizing the results in this section it follows fro
Fig. 11 that in a magnetic field the orderingBACD with
a245WD , a3450 and A8B8D8C8 with a248 5WD ,a348 50
gives an algorithm which is among the most efficient on
Using Table I in the Appendix it follows that this solution
nothing but solutionB (a245a3450,a248 5a348 50) for the or-
deringsBADC and A8B8C8D8. Taking the same solution
and setting the field to zero all the weights become equal
again using Table I in the Appendix it follows that this sol
tion is equivalent to solutionB for the orderingsABCD and
A8B8C8D8 which clearly is among the most efficient zer

FIG. 11. Same as Fig. 10 except thath50.1. In the upper pane
the ordering of vertices isBACD andA8B8C8D8 while it is BACD
and A8B8D8C8 in the lower panel. The arrow indicates the be
algorithm found in Ref.@9#.
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field algorithms as can be seen from Fig. 10. Thus with
appropriate orderings of equal-weight vertices,BADC and
A8B8C8D8, solution B is an optimal solution for thes51
Heisenberg model.

Given this fact and the other desirable features of solut
B, that it is complementary to the bounce-solution Eq.~24!,
being valid whenever the bounce solution is not andvice
versa, and the fact that it reduces to the unique bounce-f
solution in the three-vertex case when the smallest we
vanishes, we will hereafter focus solely on comparing so
tion B with solutionA.

VI. INTERACTING BOSONS

The directed loops can also be applied to the bo
Hamiltonian

H5(̂
i j &

@2t~ai
†aj1H.c.!1vninj2C#

1(
i

H 2mni1
U

2
ni~ni21!J , ~39!

which describes interacting bosons hopping on a lattice.ai
† ,

ai , and ni are the boson creation, annihilation and dens
operator on sitei, respectively. The single-site states are
beled by the boson occupation number. The vertex weig
are

W~n,n8,n11,n821!5tA~n11!n8~12dn,nx
!,

W~n,n8,n21,n811!5tAn~n811!~12dn8,nx
!,

W~n,n8,n,n8!5C2Fvnn82m̃~n1n8!1
Ũ

2
„n~n21!

1n8~n821!…G , ~40!

where ã5a/Z, and n,n8P@0,nx#. C must be chosen suc
that the diagonal vertices are non-negative. However,
cannot always be achieved as in principle the boson occu
tion number can be arbitrarily large. So in practice whenŨ
.2uvu one must put an upper limit,nx , to how many
bosons can occupy a site. The (12dn,nx

) factors are needed
to implement this. They prevent the boson occupation fr
increasing abovenx . Imposing this restriction the boson sy
tem has as many states on a single site as a spin-s model,
where 2s115nx11. Furthermore there is a one-to-one co
respondence between the nonzero vertices in the bo
model and the nonzero vertices in the spin-s XXZ model,
although their values are of course different. Thus the o
change needed to the spin-s program code is to change th
numerical values for the weights. A special example of this
the well-known mapping in the hard-core limit (U/t→`),
where one can setnx51 without penalty and thus the boso
model is mapped onto a spin-1/2 model. The error introdu
by imposing a restriction on the boson occupation num

t

1-10
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can be controlled by repeating runs with differentnx’s. One
expects only small variations in the results as long asnx is
bigger than the typical occupation number on each site
the simulations described below we usenx54 for which
there are 57 nonzero vertices.

To show the efficiency of solutionB applied to this boson
system we show in Fig. 12 the reentrant behavior of the M
insulating phase in 1D first predicted from a DMRG calc
lation @17#. In Fig. 13 we show how the densityr, compress-
ibility k5]r/]m5Nb(^r2&2^r&2) and superfluid density
rs varies for a 2D Bose-Hubbard model as the chem
potential is increased keepingt/U fixed. One can clearly se
the insulating regions as well as the singularities in the co
pressibility at the first and second superfluid-insulator tran
tion. Because of the relatively big value oft/U, being near
the tip of the lowest Mott lobes, the insulating regions b
come rapidly narrower, and the gaps are relatively sm
making it necessary to lower the temperature further to
the singularities at the higher-m superfluid-insulator transi
tions. Figure 14 compares integrated autocorrelation tim
for the density as measured using solutionA and B for a
smaller but similar system to that shown in Fig. 13. T
differences in autocorrelation times are most pronounce
low values of the chemical potential and away from t
peaks seen in the Mott insulating regions which arises fr
the small denominator in Eq.~38!.

To find the regime where it is possible to use bounce-f

FIG. 12. Densityr, compressibilityk5]r/]m, and superfluid
density rs for a N5128 site 1D boson Hubbard model withU
51, m/U50.17 as functions of the hoppingt/U. The inverse tem-
perature isbU5320 ande50 for all data points. The inset show
the compressibility in the region of the reentrant insulating pha
The lower curve in the inset is forN5256 andbU5480. The
superfluid density shown is measured as the square of the b
world-lines spatial winding number@16#.
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algorithms for this Hamiltonian we consider loops changi
the number of bosons by unity. The conservation law her
that the Hamiltonian conserves the total number of boso
n11n25n31n4. Now increase the number of bosons on t
lower left leg of a diagonal vertex by unity, then the vertic
related by the directed loop equations are shown in Fig.
and their weights are from left to right

W15W~n,m,n,m!,

W25W~n11,m,n11,m!,

W35W~n11,m21,n,m!,

W45W~n11,m,n,m11!, ~41!

where W(n1 ,n2 ,n3 ,n4) refers to Eq.~40!, and nP@0,nx
21#, mP@0,nx#. The difference between the diagon
weights isW12W25vm1Ũn2m̃. Now chooseC such that
the biggest diagonal weight (W1 or W2) is always bigger
than any of the off-diagonal weightsW3 andW4. One then
finds from Eq.~26! that in order to avoid bounces

uvm1Ũn2m̃u<tAn11@Am1Am11~12dm,nx
!#,

~42!

wherenP@0,nx21#, mP@0,nx#. The same inequality is also
obtained when considering lowering the boson occupa
value on a diagonal vertex. In the hard-core case wherenx

51 this criterion reduces toum̃u<t and uv2m̃u<t.

e.

on

FIG. 13. Densityr, compressibilityk5]r/]m, and superfluid
densityrs for the (32332) boson Hubbard model witht/U50.03
and bt52.5 as functions of the chemical potentialm/U. e50.3
was used for all data points.
1-11
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In the soft-core case,nx.1, there is an additional condi
tion for a bounce-free algorithm which in fact never is sat
fied. To see this consider the off-diagonal vertex with weig
W(n,m,n21,m11) and increase the state on the leg w
occupationn by unity. Then only two vertices with weight
tAn(m11) and tA(n11)(m11) are related. These ar
never equal, and thus according to the discussion follow
Eq. ~21! bounces are always needed for soft-core bosons

VII. 1D FERMIONS WITH SPIN

The rules described here applies also to 1D spinful fer
ons@18#. However for~anti!periodic boundary conditions th
simulation is restricted to a system where the number
spin-ups and downs are both an~even! odd number. Thus
with these boundary conditions one must carry out the sim
lation at so low temperatures that only configurations hav
a fixed~even!odd number of up and down spins contribute
For open boundary conditions there are no such restricti

Consider the 1D fermion Hamiltonian

H5(̂
i j &

$2t~cis
† cj s1H.c.!1V~ni21!~nj21!

2J'~Si
xSj

x1Si
ySj

y!1JzSi
zSj

z2C%1(
i

H US ni↑2
1

2D
3S ni↓2

1

2D2mni2HzSi
zJ , ~43!

where cis
† , cis , and nis are the creation, annihilation an

density operators of a fermion with spins on site i. ni

5n↑ i1n↓ i andSW i5ci
†sW ci /2, are the particle density and sp

operator on sitei. The states on each site are labeled by

charge and spinuq,s& so that u0&[u0,0&, u↑&[u1,1
2 &, u↓&

[u1,2 1
2 &, andu↑↓&[u2,0&. The weights of the diagonal ver

tices can be read directly off the Hamiltonian above and

FIG. 14. Integrated autocorrelation times for the densityr in a
(12312) Bose-Hubbard model.U/t533.333 andbt50.5 for the
two solutionsA and B. The valuee50.3 was used for both solu
tions A andB.
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W~q1s1 ,q2s2 ,q1s1 ,q2s2!

5C2H Jzs1s21V~q121!~q221!1
Ũ

2
@~q121!2

1~q221!221#2H̃z~s11s2!2m̃~q11q2!J , ~44!

where againã5a/Z and Z is the coordination number. As
the states will be represented in terms of occupation num
states, which are bosonic states, one needs a conventio
how the phases are related to the fermionic states. We fo
Ref. @18# and define

ci↑
† u•••ni↑50•••&5~21!ni↑

,

u•••ni ,↑51•••&, ~45!

ci↓
† u•••ni↓50•••&5~21!n↑1ni↓

,

u•••ni ,↓51•••&, ~46!

whereni↑
, is the operator counting the number of particl

with spin up on sites less thani, andn↑ is the total number
operator for spin-up particles. A similar definition holds f
the annihilation operators. The explicitn↑ for the spin down
states is to ensure anticommutation between Fermi opera
with different spin indeces. With~anti!periodic boundary
conditions

cN11,↑
† 5~21!Pc1,↑

† , ~47!

cN11,↓
† 5~21!Pc1,↓

† , ~48!

whereP5(21)0 it follows that for the off-diagonal weights
to be nonnegativen↓ , n↑ must both be~even! odd.

The weight of all off-diagonal vertices where one partic
and only one, is transferred from one site to the other it.
The off-diagonal vertex where two-particles are inte
changed, the spin-flip vertex, has weightW(↑↓

↓↑)5J'/2. In all
there are 34 allowed vertices (32 ifJ'50). We consider
four types of updates: Adding or removing a spin-up or do
particle. The conservation law here is the conservation
charge and spin. That is,q11q25q31q4 and s11s25s3
1s4.

This conservation law is in fact so strong that no fou
vertex relations exists. This can be seen by considering
process of adding a spin-up particle to the lower left leg o
diagonal vertex. In this case the update where the exit is
the upper left leg, the ‘‘continue straight through,’’ will b
allowed as well as the bounce. In addition there is one
only one off-diagonal vertex that arises: If the right legs co
tains an up spin, then the lower right leg is the allowed e
The upper right leg is the allowed exit if the right legs do

FIG. 15. Increasing the occupation on the lower left leg resu
in the following four vertices.~The circles on the legs have bee
omitted.!
1-12
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DIRECTED LOOP UPDATES FOR QUANTUM . . . PHYSICAL REVIEW E67, 046701 ~2003!
not contain an up spin. Thus only three vertices are rela
by the directed loop equations. It is quite clear that this a
holds for all the other update processes on a diagonal ve
One must also consider adding a spin-up particle to the
diagonal spin-flip vertex. This results again in three allow
vertices, but now they are all off diagonal, two with weight
and one with weightJ'/2. Finally adding a spin-up particle
to a leg on an off-diagonal vertex with weightt results in one
of the two above mentioned equation sets or in a tw
dimensional equation set with equal weights. Thus for t
model all the directed loop equations have dimensions 3
less.

To find the regime where bounces can be avoided
employ Eq.~26! with W450. ChoosingC big enough so tha
one of the diagonal vertices always have the biggest we
it follows that

t>uJzu/41uVu1uŨu/21uH̃zu/21um̃u ~49!

in order to avoid bounce-solutions to the equation s
where two diagonal and one off-diagonal vertex are rela
C cancels as it occurs on both sides of the inequality. For
set where three off-diagonal vertices are related one m
have

t>J'/4 ~50!

to avoid bounces ift<J'/2, otherwise it suffices thatJ' is
non-negative.

To compare the efficiency of solutionB with solution A
we have measured the integrated autocorrelation times
the charge density wave~CDW! order parameter atq5p
defined as

OCDW~q!5^rc~q!rc~2q!&, ~51!

where

rc~q!5~1/N!(
r

eiqr~n↑r1n↓r ! ~52!

as functions ofV for U/t52, N516, andbt532 for both
solutionsA and B ~see Fig. 16!. While the autocorrelation
times are quite long in this case considering the relativ
small system size the solutionB is more efficient than solu
tion A. The difference in autocorrelation times are largest
small values ofV.

Let us now consider another update type where two p
ticles are added. Even though the update types consid
above are sufficient for ergodicity, this update type is nec
sary if one wishes to measure superconducting correla
functions~local pairs!. Then starting from a diagonal verte
it is clear that one cannot reach an off-diagonal vertex. T
there are only two possibilities, continuing straight throu
or bouncing. To avoid bouncing the weights of the result
vertices must be equal, which meansV5m50. Otherwise
bounces are necessary. Entering an off-diagonal vertex
leads to only two exit possibilities, but there both ha
weight t and so the bounce probability can be set to zero
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VIII. SPIN-1 Õ2 FERROMAGNET IN A TRANSVERSE FIELD

As an example of a model without a conservation law
consider the spin-1/2 XXZ ferromagnet in a transverse m
netic field, that is a field along thex direction.

H52(̂
i j &

$~Si
xSj

x1Si
ySj

y!2JzSi
zSj

z1C%2hx(
i

Si
x .

~53!

The exchange coupling in the spin XY plane is restricted
be ferromagnetic as ap-rotation on one sublattice which wa
necessary to obtain an antiferromagnet in the zero-field c
cannot be employed here without introducing a minus s
coming from thehx-term. Alternatively one can view this a
an antiferromagnet in astaggeredmagnetic field.

The transverse field introduces vertices where the sum
the spins on the lower two legs is not equal to the sum on
upper two legs, see Fig. 17. This reflects the fact that( iSi

Z is
not a good quantum number in the presence of a transv
field. Thus the conservation law utilized in Sec. IV cannot
used and we must include the possibilities of a state cha
on just one leg, the entrance or the exit leg, keeping the s
on the other legs unchanged. The path construction in
absence of a conservation law always start by keeping
entrance leg on the first vertex unchanged, while it sto
when the state on the exit leg is not changed.

To find the directed loop equations here we first look
the vertex where all spins are up and the entrance le
unchanged. Then we have the possibilities of exiting at o
of the four legs as well as changing or not changing the s

FIG. 16. Integrated autocorrelation times for the CDW ord
parameter for the two solutionsA andB in a N516 sites system at
bt532, U/t52, m5J'5Jz5Hz50 as functions ofV. The inset
showsOCDW(p) measured for system sizesN516, 32, 64 at low
temperaturesbt52N. e50.5 was used for both solutionsA andB.
1-13
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OLAV F. SYLJUÅSEN PHYSICAL REVIEW E67, 046701 ~2003!
on the exit leg. In all there are eight possibilities, see Fig.
thus the directed loop equations have dimension 8. While
dimension is rather big there are only two different vert
weights,W(↑↑

↑↑) andW(↓↑
↑↑) ~the vertices with one leg differ

ent from the others are all degenerate!. Next one should take
the same vertex, but now change the state on the entr
leg. Now there are just seven possibilities as changing b
the lower legs leads to a zero-weight vertex. This proced
should be repeated for all vertices, entrance legs and up
types.

It is interesting to note that the region where one c
avoid bounces is in fact bigger in this representation usin
transverse field than found in Sec. IV. Take the situat
where the lower left leg on a diagonal vertex is changed. T
vertices belonging to the equation set generated in this
are the vertices that would be generated without the tra
verse fieldplus the four vertices with just the in-leg change
and no change of state on the out leg. The no-bounce c
rion is then~assuming thatC is chosen such that the diagon
vertices are biggest!

uJzu
2

<
1

2
14

h̃x

2
. ~54!

One must also consider the sets of the type shown in Fig
where the in-leg is not changed. As there in these cases
just two different weights out of a total of eight the inequa
ity Eq. ~27! is always satisfied.

As explained in Sec. IV there is an ambiguity in solutio
B when many vertex weights are equal. Here we have u
the convention that when two weights are equal that with
lowest exit leg comes first. In the rare case where the
legs are also equal, that with the no state change on the
leg comes first. We have tried solutionA, B1, and a solution
B2 which is particular for systems of dimensionality le
than or equal to 8:

a125~W11W22W32W4!/2,

a135~W12W21W32W4!/2,

a235~2W11W21W31W4!/2,

a145W42~W51W61W71W8!/4,

a155a455W5/4, . . . , ~55!

a185a485Wn/4,

a565~W51W62W72W8!/4,

FIG. 17. Examples of vertices which do not conserve the to
spin in theZ direction. In the transverse fields51/2 XXZ model all

such vertices have weighth̃x/2 (h̃x5hx /Z).
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a575~W52W61W72W8!/4,

a585W8/2,

a675~2W51W61W71W8!/4. ~56!

This solution reduces also to solutionB when W55W6
5•••5Wn50 and is restricted to the region, where2W5
1W61W71W8>0.

We found that solutionsA and B2 perform better than
solution B1 in all cases studied. This can perhaps be
plained by the fact that inB1 many processes vanish whe
the smaller weights are equal which is the case for sma
intermediate fields. The difference in efficiency between
lution A andB2 is small in the cases studied here. We ha
been unable so far to find a bounce-free solution wh
clearly outperforms solutionA.

For hx50 the 2d XY model (Jz50) exhibits a phase
transition of the Kosterlitz-Thouless type@19# as a function
of temperature, where the helicity modulus as measured
the second derivative of the free energy to a twistu in the
boundary conditions shows an emerging discontinuity w
increasing system size atTc . In zero field this quantity is
efficiently measured as the fluctuations in the spatial wind
number of the loops. With a magnetic field term one can s
measure the second derivative of the free energy with res
to a twist in the boundary condition as fluctuations in
‘‘winding’’ number provided one redefines the winding num
ber to include a term coming from the magnetic field term
the Hamiltonian:

d2F

du2
5

T

2
~^Whx

2 &1^Why

2 &!, ~57!

where we have symmetrized the expression inx andy. The
modified ‘‘winding’’ numberWhs

, wheres5x,y, is

Whs
5

1

Ns
(

p
$~dp,↑↓

↓↑2dp,↓↑
↑↓!dpW ,ŝ1s~p!@dp,↓↑

↑↑2dp,↑↑
↓↑

1dp,↓↓
↑↓2dp,↑↓

↓↓1dp,↑↓
↑↑2dp,↑↑

↑↓1dp,↓↓
↓↑2dp,↓↑

↓↓#%, ~58!

where the sum is over all verticesp in the linked list. The
Kronecker d-functions contribute whenever the vertexp
equals the indicated vertex.s(p) is thes coordinate of the

l

FIG. 18. The possible exit legs and exit state changes when
entrance leg is the lower left leg on the vertex with all spins up a
the entrance leg is unchanged. The dashed line indicates tha
state should remain unchanged, while the solid line indicates a
flip.
1-14
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DIRECTED LOOP UPDATES FOR QUANTUM . . . PHYSICAL REVIEW E67, 046701 ~2003!
site whose state is changed in the vertexp. The symboldpW ,ŝ
means that the bond to which the vertex is attached mus
in the s direction, andNs is the number of sites in thes
direction.

In Fig. 19 we have measured]2F/]u2 at hx51 as a func-
tion of ~inverse! temperature forL3L square lattices, where
L ranges from 8 to 1024. For strong fields the spins
predominantly in thex direction, and it is expected that
twist in the boundary condition will cause]2F/]u2 to de-
pend linearly onL. In the bottom panel we confirm this b
showing how the scaled curves~scaling factor 1/L) collapse
onto one curve for allL ’s. In this plot we also show the
magnetization for the biggest system size.

IX. DISCUSSION

We have shown how to construct probability tables for
directed loop update in the SSE method in a mod
independent way. The construction involves solutions of
directed loop equations. These equations arise from con
ering vertices that can be reached from a certain vertex w
states on two legs of that vertex are changed. For a g
model there are many such equation sets. To cope with
many sets it is best to generate them in the set-up part o
Monte Carlo program. Efficiency is not an issue in this co
struction process as thesameprobability tables will be em-
ployed throughout the simulation. To construct the proba
ity tables the program should go through every entrance

FIG. 19. The second derivative of the change in free ene
resulting from a twist in the boundary conditions is shown~top
panel! as functions of inverse temperature for different square
tice system sizesL3L ranging fromL58 to L51024. The bottom
panel shows the plot of]2F/]u2L which collapses onto one curv
for all L as well as the magnetization obtained using the bigg
system size (L51024). For all pointse50.5.
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on every vertex type occurring in the model under consid
ation. For each of these entrance legs the program also
to consider every possible update, as there should be
probability table associated with every entrance leg, ver
and update type. For each of these entrance legs and up
types one finds all possible exit legs and exit states, and
the related vertices. The number of vertices with nonz
weights reached in this way determines the effective dim
sionality of the directed loop equations. Having found th
dimension and weights for the different vertices one can t
pick the probabilities of moving from vertexi to j as P( i
→ j )5ai j /Wi , whereai j is gotten from the general solution
described in Sec. III.

The solutions are naturally divided into two classes; tho
with and those without bounces: processes where the
back-tracks along its path. Bounces should generally
avoided as they are inefficient. The precise criterion for wh
bounces can be avoided is given in Eq.~27!. When this cri-
terion is not fulfilled, bounces are necessary. A general s
tion which then always can be applied is given in Eq.~24!,
where there is only one bounce, namely, bouncing off
vertex with the biggest weight.

Whenever bounces can be avoided it is likely that th
exists a bounce-free algorithm which is more effective. T
is supported by the results in Ref.@7# and in the examples
considered here with the exception of the transverse fi
XXZ model, where we have not been able to find a boun
free solution which clearly is more efficient than solutionA.
However, the author believes that such a solution exists.

For directed loop equation sets with dimension<3, as is
the case for all the equation sets in thes51/2 XXZ model as
well as for the 1D spinful fermion model considered he
the bounce-free solution is unique and is given by Eq.~22!.
For sets with dimension.3 the bounce-free solution is no
unique. In Eq.~25! we have parametrized all bounce-fre
solutions in the four-dimensional case. Testing the efficien
of different parameter choices on a model where there is o
one four-dimensional equation set, thes51 Heisenberg
model in zero field, we find that even in the case where
four weights related by the set are equal, the most effec
solution is not the most symmetric one~all off-diagonalai j ’s
of equal magnitude!. Thus we conclude that it is not possib
to find the most effective solution based on the weights o
single isolated directed loop equation set alone. This is n
ral as the efficiency depends on the overall loop mot
through all possible vertices and not just the motion within
certain subset of vertices related by the same directed
equation set. Our finding of the most efficient algorithm f
the spin-1 model coincides with the most efficient direct
gorithm found by Harada and Kawashima@9#.

We have also shown how the directed loop equations
be applied to study spin-s XXZ models, lattice bosons, 1D
spinful fermions and transverse field spin models using
same computer code just changing the number of allow
states on each site as well as the vertex weights. We h
also worked out expressions for the regions where one
construct algorithms without bounces for these models.

While finding the most efficient solution to the directe
loop equations among the many possible ones remains a

y

t-

st
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ficult task, the solutions given here are generally more e
cient than the solution employed in Ref.@5#. The many pos-
sible solutions to the directed loop equations should be s
as an asset. They are powerful tools allowing efficient sim
lations of a wide class of quantum models.
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APPENDIX: THE FOUR-DIMENSIONAL NO-BOUNCE
SOLUTION WHEN TWO OR MORE WEIGHTS

ARE EQUAL

The no-bounce solutions in the four-dimensional case
be parametrized as

a125~W11W22W32W4!/21a34,

a135~W12W21W32W4!/21a24, ~A1!

a235~2W11W21W31W4!/22~a341a24!,

a145W42~a341a24!, ~A2!

where it is assumed thatW1>W2>W3>W4. When two or
more of these weights are equal the ordering is ambigu
However, any solution obtained for a chosen ordering a
choices ofa245a and a345b is identical to a solution ob-
tained using another ordering and other values ofa24 and
a34. The purpose of Table I is to relate values ofa24 anda34
for different orderings. We choose as a reference ordering
order ABCD which means thatW15WA , W25WB , W3
5WC , and W45WD . As an example consider the ca
whereWC5WD but WA.WB.WC . Then the two orderings
ABCD andABDC are inequivalent. From the third entry i
hi,

n
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Table I we read that a choice ofa245a and a345b for the
orderingABCD give the same rules as the orderingABDC
with the rules a245WD2a2b and a345b. WD5(2W1
1W21W31W4)/2.

TABLE I. The table shows how the solution of Eqs.~A1! with
orderingABCD and a245a, a345b are related to other solution
with different orderings of vertices when two or more weights a
equal.WD5(2W11W21W31W4)/2.

Order a24 a34

WA5WB.WC.WD BACD WD2a2b b
WA.WB5WC.WD ACBD b a
WA.WB.WC5WD ABDC WD2a2b b
WA5WB.WC5WD BACD WD2a2b b

ABDC WD2a2b b
BADC a b

WA5WB5WC.WD BACD WD2a2b b
BCAD b WD2a2b
ACBD b a
CABD WD2a2b a
CBAD a WD2a2b

WA.WB5WC5WD ABDC WD2a2b b
ACBD b a
ACDB WD2a2b a
ADBC b WD2a2b
ADCB a WD2a2b

WA5WB5WC5WD ABCD a a b
BACD a WD2a2b b
CBAD a a WD2a2b
DBCA a b a
ACDB a WD2a2b a
ADBC a b WD2a2b

aWhen all weights are equal the transformations (1↔2,3↔4),
(1↔3,2↔4), and (1↔4,2↔3) are symmetry transformations im
plying in particular that the orderingsABCD, BADC, CDAB, and
DCBA give the same rules for a particular choice ofa andb.
at
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